
A Framework for Secure Speech Recognition
Paris Smaragdis *,Senior Member, IEEEand Madhusudana Shashanka,Student Member, IEEE

Abstract— In this paper we present a process which enables
privacy-preserving speech recognition transactions between two
parties. We assume one party with private speech data and one
party with private speech recognition models. Our goal is to
enable these parties to perform a speech recognition task using
their data, but without exposing their private information to
each other. We will demonstrate how using secure multiparty
computation principles we can construct a system where this
transaction is possible, and how this system is computationally
and securely correct. The protocols described herein can beused
to construct a rudimentary speech recognition system and can
easily be extended for arbitrary audio and speech processing.

Index Terms— Secure Multiparty Computation, Gaussian Mix-
ture Models, HMM, Speech Recognition.

EDICS: SPE-GASR

I. I NTRODUCTION

The widespread use of networking technology today has
spawned an industry of online services. Business models
based on client-server interactions are common place and
increasingly more prominent. Speech recognition could easily
be a part of this trend where servers can provide speech
recognition services for remote clients. The private nature
of speech data however is a stumbling block for such a
development. Individuals, corporations and governments are
understandably reluctant to send private speech data through
a network to another party that cannot be trusted. In this paper
we address this issue and show how such a cooperative model
can be realized with no privacy leaks from any involved party.

We will specifically focus on the realization of a hidden
Markov model (HMM) in a secure framework that allows
training and classification between multiple parties, someown-
ing speech data and some owning HMM models for speech
recognition. Our formulation is shaped in such a way that the
providers of the speech will not have to share any information
about their data and the providers of the HMM will not share
any information on their model. After evaluation the results
will only be revealed to the parties that have provided the
data, and not to the parties that provide the HMM models,
thereby providing privacy at both the data and the semantic
levels.

We will demonstrate the use of this idea using two scenarios.
One scenario will involve the training of HMMs from data
provided by multiple parties, and the other will deal with eval-
uating already trained HMMs on data from another party. The
utility of these scenarios in collaborative speech recognition
projects is easy to see. The first scenario can enable model
training on multiple speech databases without requiring the
disclosure of actual speech data, whereas the other scenario
can enable speech recognition as a service model to remote
customers who wish to maintain privacy on their data and their

transcription from both the service provider and malicious
network intruders.

Strange as these constraints might seem, they can be
satisfied using secure multiparty computation (SMC) proto-
cols. SMC is a field of cryptography that provides means
to perform arbitrary computations between multiple parties
who are concerned with protecting their data. The field of
SMC originated from the work of Yao [1] who gave a
solution to the millionaire problem: two millionaires want
to find which one has a larger fortune, without revealing
any specific numbers to each other. Recently this concept
has been employed for simple machine learning tasks such
as multiple parties performing k-means [2], computation of
means and related statistics from distributed databases [3] and
rudimentary computer vision applications [4]. See [5] for a
detailed treatment of the topic. In this paper we present a SMC
formulation of training and evaluating HMMs as applied on
speech data. To our knowledge this is the first application of
SMC concepts for privacy constrained speech technology. We
will consider HMMs where the observations are modeled by
mixtures of Gaussians as is common in speech recognition
applications. The main contributions in this paper are the
creation of privacy-preserving protocols that support Gaussian
mixture model and HMM learning and evaluation, as well as
a secure method to combine these protocols so as to ensure
data privacy.

The remainder of this paper is organized as follows. In
section II we formally introduce the problem at hand and
in section III we introduce the secure computation primitives
that are employed for this task. Using these primitives, we
deal with the problem of secure classification using Gaussian
mixtures in section IV and in section V we extend that
to present protocols for secure HMMs. We provide a brief
discussion about security and efficiency of our protocols in
section VI. Finally in section VII we provide conclusions and
directions for future extensions.

II. PROBLEM FORMULATION

Hidden Markov models find use in a wide range of applica-
tions, and have been successfully used in speech recognition.
There are three fundamental problems for HMM design,
namely: the evaluation of the probability (or likelihood) of a
sequence of observations given a specific HMM; the determi-
nation of a best sequence of model states; and the adjustment
of model parameters so as to best account for the observed
signal. The first problem is one of scoring how well a given
model matches a given observation sequence. The second
problem is one in which we attempt to uncover the hidden part
of the model. The third problem is the problem of “training”.
Algorithms for the above three problems are well known and
described in detail in [6].



We will consider these problems using a transaction between
two parties named Alice and Bob. Suppose Bob has a trained
HMM with all the model parameters learned. Let the HMM
be characterized as follows:

• N states{S1, . . . , SN}. Let the state at timet be qt.
• The state transition probability distributionA = {aij}

where

aij = P [qt+1 = Sj |qt = Si], 1 ≤ i, j ≤ N. (1)

• The observation symbol probability distribution in state
j given by a mixture of Gaussians

bj(x) =

M
∑

m=1

cjmN (µjm,Σjm), 1 ≤ j ≤ N, (2)

wherex is the variable,cjm is the mixture coefficient
for them-th mixture in statej, andN (µjm,Σjm) is a
gaussian with mean vectorµjm and covariance matrix
Σjm.

• The initial state distributionπ = {πi} where

πi = P [q1 = Si] 1 ≤ i ≤ N. (3)

We useλ to denote the entire parameter set of the model.
Consider the first two problems where Bob has a trained

HMM with all the model parameters learned. Let Alice have
an observation sequenceX = x1x2 . . .xT . We will show
how Alice can securely computeP (X|λ), the probability of
the observation sequence given the model, using theforward-
backwardprocedure. We will also show how one can securely
learn the best sequence of model states using theviterbi
algorithm.

Once there is a secure way of computing likelihoods, it
is easy to see how it can be extended to applications like
speech recognition. Suppose Bob has trained several HMMs
which characterize various speech sounds. Each HMM will
correspond to a speech recognition unit. Let Alice’s observa-
tion vector correspond to a small snippet of speech sound (we
assume that Alice knows the features that Bob has used to
train his HMMs on and has represented her sound sample in
terms of those features). We then show how Alice and Bob can
obtain additive shares of the likelihood of Alice’s observation
sequence for every speech recognition unit of Bob and use
them to find out the unit that corresponds to Alice’s sound
snippet.

Now consider the third problem of training. The problem of
security arises when Bob wants to train a HMM (or do data
mining in general) on combined data from private databases
owned by Alice and Charlie. We show how Bob can securely
reestimate parameters of his HMM without gaining knowledge
about the private data. The implicit assumption, of course,
is that Alice and Charlie are willing to let Bob learn about
distributions of their data.

III. SECURE TWO-PARTY COMPUTATIONS; BACKGROUND

The speech-recognition example that we will present is a
specific example of asecure two-party computation. Consider
the case where Alice and Bob have private dataa and b

respectively and they want to compute the result of a function

Fig. 1. Implementing an algorithm securely. The algorithm takes in private
inputs a and b. Algorithm is split into steps that can be implemented as
secure primitives (shown as grey boxes). Intermediate results are distributed
as random additive shares and feed into the following steps.Final resultc is
obtained by both parties (or the designated receiver).

f(a,b). Consider a trusted third-party who can take the private
data, compute the resultc = f(a,b), and intimate the result
to the parties. Any protocol that implements an algorithm
to calculatef(a,b) is said to besecureonly if it leaks no
more information abouta andb than what one can gain from
learning the resultc from the trusted third-party. We assume
a semi-honestmodel for the parties where they follow the
protocol but could be saving messages and intermediate results
to learn more about other’s private data. In other words, the
parties arehonest but curiousand will follow the agreed-upon
protocol but will try to learn as much as possible from the
data flow between the parties.1

To implement an algorithm securely, we will have to im-
plement each step of the algorithm securely. If one of the
steps is insecurely implemented, either party could utilize the
information to work their way backwards to gain knowledge
about the other’s private data. In addition, one must also
consider the results of intermediate steps. If such resultsof
intermediate steps are available, there is a possibility that one
could also get back to the original private inputs. To prevent
this:

• we express every step of the algorithm in terms of a hand-
ful of basic operations (henceforth called asprimitives)
for which secure implementations are already known, and

• we distribute intermediate results randomly between the
two parties such that neither party has access to the entire
result. For example, instead of obtaining the resultz of
a certain step, the parties receiverandom additive shares
z1 and z2 (z1 + z2 = z). See figure 1 for a schematic
illustration.

Secure protocols are often analyzed for correctness, security
and complexity. Correctness is measured by comparing the
proposed protocol with the ideal protocol using a third party.
If the results are indistinguishable, the protocol is correct (note
that one can use secure approximation to an ideal algorithm).
All the protocols we present are exact protocols. For security,
one needs to show what can and cannot be learned from

1In a malicious model, no such assumptions are made about the parties’
behavior. If both parties are malicious, security can be enforced by accom-
panying the protocols with zero-knowledge proofs that protocols are being
followed. If only one of the parties is malicious, the other party can use
conditional disclosure of secretsprotocols [7] to make sure he/she receives
valid inputs from the malicious party.



the data exchange. For complexity, one shows the computa-
tional and communication complexity of the secure algorithm.
Based on the choice of primitives used and how they are
implemented, one can achieve different levels of security
and computational/communication efficiency. To evaluate the
efficiency of protocols we propose in later sections, we provide
measures in terms of efficiency of the primitives instead of
absolute measures. Below, we describe the primitives that we
use and briefly discuss about their implementations.

A. Secure Inner Products (SIP )

The primitive which we use most often is for computing
secure inner products. If Alice has vectorx and Bob has vector
y, a secure inner product protocol produces two numbersa
and b such thata+ b = xTy. Alice will get the resulta and
Bob will get the resultb. To simplify notation, we shall denote
a secure inner product computationxTy asSIP (x,y).

Many protocols have been proposed and they can be cate-
gorized as cryptographic protocols (eg. [8], [9]) and algebraic
protocols (eg. [10], [11], [12], [13], [14]). They provide
different levels of security and efficiency. Most of the algebraic
protocols leak some information but are more straightforward
and efficient than their cryptographic counterparts. The proper-
ties and weaknesses of some of these algebraic protocols have
been analyzed in detail ([3], [9]). In this paper we will be
using cryptographic protocols as they tend to be more secure.
In appendices I and II we provide a description of two of the
cryptographic protocols we have used. We have also included
an algebraic protocol in appendix III for comparison.

B. Secure Maximum Index (SMAX)

Let Alice have a vectorx = [x1 . . . xd] and Bob have the
vectory = [y1 . . . yd], they would like to compute the index
of the maximum ofx + y = [(x1 + y1) . . . (xd + yd)]. At the
end of the protocol, Alice (and/or Bob) will receive the result
but neither party will know the actual value of the maximum.
Notice that the same protocol can be used to compute the
index of the minimum. We denote this asj = SMAX(x,y).

For this primitive, we use the permute protocol proposed by
[15] (see appendix IV). The protocol enables Alice and Bob to
obtain additive shares,q ands, of a permutation of the vector
x+y, π(x+y), whereπ is chosen by Alice and Bob has no
knowledge ofπ. The idea is for Alice to sendq−r, wherer is
a random number chosen by her, to Bob. Bob sends back the
index of the maximum element ofq+s−r to Alice who then
computes the real index using the inverse of the permutation
π. Neither party learns the value of the maximum element and
Bob does not learn the index of the maximum element.

If the security requirements of Alice are more strict, she
can encrypt elements ofq using a homomorphic encryption
scheme and send them to Bob along with the public key. Bob
can make comparisons among the encrypted values ofπ(x+y)
using protocols for Yao’s millionaire problem (eg. [16], [17])
and send back the index of the maximum element.

C. Secure Maximum Value (SV AL)

Let Alice have a vectorx = [x1 . . . xd] and Bob have the
vectory = [y1 . . . yd], they would like to compute the value of
the maximum element inz = x+y. After the protocol, Alice
and Bob receive additive shares of the result,a and b, but
neither party will know the index of the maximum element.
Notice that the same protocol can be used to compute the value
of the minimum. Let us denote this asa+ b = SV AL(x,y).

For this protocol, we can use the idea presented in [15].
Let us first consider a naive approach. Notice thatzi ≥
zj ⇐⇒ (xi − xj) ≥ (yj − yi). Alice and Bob can do
such pairwise comparisons and mimic any standard maximum
finding algorithm to learn the value of the maximum. To
perform the comparisons securely, they can use a protocol for
Yao’s millionaire problem [1].

However, if Alice and Bob follow the above naive approach,
both will be able to also find the index of the maximum.
Hence, the idea is for Alice and Bob to obtain two vectors
whose sum is a random permutation ofz. Neither Alice nor
Bob should know the permutation. They can then follow
the above naive approach on their newly obtained vectors
to compute additive shares of the maximum element. See
appendix IV for a description of the permutation protocol.

D. Secure Logsum (SLOG)

This primitive, unlike the other three which we have in-
troduced above, is not a cryptographic primitive. The main
reason we introduce it is because it simplifies the presentation
of many of the protocols we propose in future sections.

Let Alice have a vectorx = [x1 . . . xd] and Bob have the
vectory = [y1 . . . yd] such thatx+y = ln z = [ln z1 . . . ln zd].
They would like to compute additive sharesq ands such that
q + s = ln(

∑d
i=1 zi). Let us denote this secure computation

asq + s = SLOG(x,y).
One can compute logarithm of a sum from the logarithms

of individual terms as follows:

ln

( d
∑

i=1

zi

)

= ln

( d
∑

i=1

exi+yi

)

(4)

This suggests the following protocol.
1) Alice and Bob compute the dot product between vectors

ex−q andey usingSIP (ex−q, ey) whereq is a random
number chosen by Alice. Let Bob obtainφ, the result
of the dot product.

2) Notice that Bob hass = lnφ = −q + ln(
∑d

j=1 e
xj+yj )

and Alice hasq.
In step (3), Bob receives the entire result of a dot product.

However, this does not reveal any information to him aboutx

due to the presence of the random numberq. In no other step
does either party receive the complete result of an operation.
Thus, the protocol is secure. In terms of efficiency, this
primitive is equivalent to using theSIP primitive once.

IV. SECURE CLASSIFICATION: GAUSSIAN M IXTURE

MODELS

Alice has ad-component data vectorx and Bob knows
multivariate gaussian distributions ofN classesωi, i =



{1, . . . , N} that the vector could belong to. They would like
to engage in a protocol that lets Bob classify Alice’s data but
neither of them wants to disclose data to the other person. We
propose protocols which enable such computations.

The idea is to evaluate the value of thediscriminant function

gi(x) = ln p(x|ωi) + lnP (ωi) (5)

for all classesωi and assignx to classωi if gi(x) > gj(x)
for all j 6= i. Here,p(x|ωi) is the class-conditional probability
density function andP (ωi) is thea priori probability of class
ωi. We consider two cases where: (1) each class is modeled
as a single multivariate gaussian, and (2) each class modeled
as a mixture of gaussians.

A. Case 1: Single Multivariate Gaussian

We assume that the distribution of data is multivariate
gaussian i.e.p(x|ωi) ∼ N (µi,Σi), where µi is the mean
vector andΣi is the covariance matrix of classωi. Hence, the
log-likelihood is given by:

ln p(x|ωi) = −
1

2
(x−µi)

tΣ−1
i (x−µi)−

d

2
ln 2π−

1

2
ln |Σi|

(6)
Ignoring the constant term(d/2) ln 2π, we can write equa-

tion (5) as:

gi(x) = −
1

2
(x−µi)

tΣ−1
i (x−µi)−

1

2
ln |Σi|+lnP (ωi) (7)

Simplifying, we have:

gi(x) = xTW̄ix + w̄T
i x + wi0 (8)

where

W̄i = −
1

2
Σ−1

i , w̄i = Σ−1
i µi, and

wi0 = −
1

2
µT

i Σ−1
i µi −

1

2
ln |Σi|+ lnP (ωi) (9)

Let us create the(d + 1)-dimensional vectors̄x and wi

by appending the value1 to x and appendingwi0 to w̄i. By
changingW̄i into a(d+1)×(d+1) matrixWi where the first
d components of the last row are zeros and the last column
is equal towT

i , we can express equation (8) in a simplified
form:

gi(x) = x̄TWix̄

Expressingx̄ as x for simplicity, we can write the above
equation as:

gi(x) = xTWix (10)

Henceforth, we shall usex to denote a(d+1)-dimensional
vector with the last component equal to 1 unless otherwise
mentioned.

Protocol SMG: Single Multivariate Gaussian

Input : Alice has vectorx, Bob hasWi for i = 1, 2, . . . , N .
We express the matrixWi as[W1

i W
2
i . . .W

d+1
i ], whereWj

i

is the j-th column ofWi.
Output : Alice learnsI such thatgI(x) > gj(x) for all j 6= I.
Bob learns nothing aboutx.

1) For i = 1, 2, . . . , N

a) For j = 1, . . . , d + 1, Alice and Bob perform
SIP (x,Wj

i ) to obtain the vectorsai = [a1
i . . .

ad+1
i ] and bi = [b1i . . . b

d+1
i ] respectively. Alice

then computesaix.
b) Alice and Bob performSIP (bi,x) to obtain qi

andri respectively.
2) Alice has vectorA = [(a1x + q1) . . . (aNx + qN )] and

Bob has vectorB = [r1 . . . rN ].
3) Alice and Bob perform the secure maximum index

protocol between the vectorsA andB and Alice obtains
I = SMAX(A,B).

Correctness: In step 1,ai and bi are vectors such that
ai + bi = xT Wi. Also, bix = qi + ri. Hence,xT Wix is
given byaix + qi + ri. I is the value ofi for which xTWix

is maximum.
Efficiency: For a giveni = I, the above protocol has(d+ 2)
SIP calls. Hence, it would takeN(d+2) SIP calls and one
call of SMAX .
Security: If Bob gets to know the dot products ofd different
vectors withx, he can learnx completely. However, we see
that neither Bob nor Alice ever learn the complete result of
any dot product. Hence, if the protocols forSIP andSMAX
are secure, the above protocol is secure.

B. Case 2: Mixture of Gaussians

Let us now consider the case where each class is modeled
as a mixture of gaussians. Let the mean vector and covariance
matrix of the j-th gaussian in classωi be µij and Σij

respectively. Hence we havep(x|ωi) =
∑Ji

j=1 αijN (µij ,Σij)
whereJi is the number of gaussians describing classωi and
αij are the mixture coefficients. The log likelihood for thej-th
gaussian in thei-th class is given by:

lij(x) = xT W̄ijx + w̄T
ijx + wij (11)

where

W̄ij = −
1

2
Σ−1

ij , w̄ij = Σ−1
ij µij , and

wij = −
1

2
µT

ijΣ
−1
ij µij −

1

2
ln |Σij |+ lnαij

Expressingx as a(d+1)-dimensional vector and̄Wij , w̄ij ,
wij together as the(d+ 1)× (d+ 1) matrix Wij as done in
the previous case, we can simplify equation (11) as:

lij(x) = xT Wijx (12)

Hence, the discriminant function for thei-th class can be
written as

gi(x) = logsum
(

li1(x), . . . , liJi
(x)

)

+ lnP (ωi)

= ln

( Ji
∑

j=1

elij(x)

)

+ lnP (ωi) (13)



Protocol MoG: Mixture of Gaussians

Input : Alice has vectorx, Bob hasWij and P (ωi) for
i = 1, 2, . . . , N , andj = 1, 2, . . . , Ji.
Output : Alice learnsI such thatgI(x) > gj(x) for all j 6= I.
Bob learns nothing aboutx.

1) For i = 1, 2, . . . , N

a) Alice and Bob engage in steps 1 and 2 of Protocol
SMG for theJi gaussians in thei-th mixture to
obtain vectorsAi = [Ai1 . . . AiJi

] and Bi =
[Bi1 . . . BiJi

]. Notice thatAij +Bij = lij(x).
b) Alice and Bob engage in the secure logsum pro-

tocol with vectorsAi andBi to obtainui and zi

i.e. ui + zi = SLOG(Ai,Bi).

2) Bob computes the vectorv = [v1 . . . vN ] wherevi =
zi + lnP (ωi). Alice forms the vectoru = [u1 . . . uN ].

3) Alice and Bob perform the secure maximum index
protocol between vectorsu and v and Alice obtains
I = SMAX(u,v).

Correctness: If one follows the protocol carefully, it is easy
to see thatui + vi is equal togi(x).
Efficiency: For a giveni, there are(Ji(d+2)+1) SIP calls.
Hence, in all, there are(d + 2)

∑N

i=1 Ji + N SIP calls and
1 SMAX call.
Security: If Protocol SMG and the protocols forSIP , SV AL
and SMAX are secure, the above protocol is secure. In
case Alice and Bob want to compute additive shares of the
likelihood instead of the class label, they can use theSV AL
protocol instead ofSMAX in the last step.

C. Training Gaussian Mixture from Data

We now focus on a related problem. Let us suppose Alice
hasK d-component vectorsx1,x2, . . . ,xK . And she wants to
learn a mixture ofc gaussians from the data. She can use the
iterativeexpectation-maximization(EM) algorithm to estimate
the parameters of thec gaussians and the mixture weights.
Now, consider the scenario when Bob wants to learn the
parameters but Alice does not want to disclose her data to Bob.
One solution is for Alice to estimate the parameters herself
and then give them to Bob. Another approach is for Alice
and Bob to engage in a secure protocol which lets Bob learn
the parameters while Alice’s data remain private. The latter
approach becomes necessary in a scenario where Bob wants
to do data mining on combined data from private databases
owned by Alice and Charlie. Below, we describe a secure
protocol which lets two parties perform such computations.

EM algorithm

We denote the estimate of a particular parameter after
the r-th iteration by using a superscript. Thus,µr

i , Σr
i and

P r(ωi) denote the mean vector, covariance matrix and the
mixture weight for thei-th gaussian after ther-th iteration.
For convenience, let us denote the entire parameter set after
the r-th iteration byλr. At any given iteration, Alice has
access to her data and Bob has access to the parameterΣr

i .
Alice and Bob have additive sharesµr

iA, µr
iB and ℓiA, ℓiB

such thatµr
iA + µr

iB = µr
i and ℓiA + ℓiB = lnP r(ωi). We

can write the steps of the EM algorithm as follows:

E Step:

P (ωi|xk, λ
r) =

p(xk|ωi, µ
r
i ,Σ

r
i )P

r(ωi)
∑c

j=1 p(xk|ωj,µr
j ,Σ

r
j)P

r(ωj)
(14)

Input : Alice hasxk, µr
iA and ℓiA; Bob hasµr

iB, Σr
i and

ℓiB, i = 1, 2, . . . , c.
Output : Alice and Bob obtainuik and vik such thatuik +
vik = lnP (ωi|xk, λ

r).

1) Bob forms matricesWi for i = 1, . . . , c with µr
iB , Σr

i

as described in section IV-A and equation (9) (using
(d/2) ln 2π instead oflnP (ωi) to computewi0). With
(xk − µr

iA) as Alice’s input andWi for i = 1, . . . , c
as Bob’s input andN = c, Alice and Bob engage in
steps 1 and 2 of Protocol SMG (section IV-A) to obtain
vectorsA′

k andB′
k.

• Log-likelihood ln p(xk|ωi,µ
r
i ,Σ

r
i ) is given by

equation 6. Notice that using(xk − µr
iA) in place

of xk andµr
iB in place ofµr

i in equation 6 yields
the same result as usingxk andµr

i .
• The sum of thei-th elements,A′

ik + B′
ik, is equal

to ln p(xk|ωi,µ
r
i ,Σ

r
i ).

2) Alice and Bob obtain vectorsAk and Bk, where for
eachi, Aik = A′

ik + ℓiA andBik = B′
ik + ℓiB.

• Notice that Aik + Bik is the logarithm of the
numerator in equation 14.

3) Alice and Bob engage in the secure logsum protocol
with the vectorsAk and Bk to obtain yk and zk i.e.
yk + zk = SLOG(Ak,Bk).

• Notice thatyk + zk is the logarithm of the denom-
inator of equation 14 (follows from equation 4).

4) Alice forms vectoruk, whereuik = (Aik − yk). Bob
forms the vectorvk, wherevik = (Bik − zk)

• uik + vik = lnP (ωi|xk, λ
r).

M Step:

µr+1
i =

∑K

k=1 P (ωi|xk, λ
r)xk

∑K

k=1 P (ωi|xk, λr)

P r+1(ωi) =

∑K

k=1 P (ωi|xk, λ
r)

K

Σr+1
i =

∑K
k=1 P (ωi|xk, λ

r)(xk − µr+1
i )(xk − µr+1

i )T

∑K

k=1 P (ωi|xk, λr)

(15)

Input : Alice hasxk, k = 1, . . . ,K. Alice and Bob have
K-vectorsE andF such thatEk + Fk = lnP (ωi|xk, λ

r).
Output : Alice obtainsµr+1

iA , ℓiA; Bob obtainsµr+1
iB , Σr+1

i

andℓiB. (µr+1
iA +µr+1

iB = µr+1
i andℓiA+ℓiB = lnP r+1(ωi)).

1) Alice and Bob engage in the secure logsum protocol
with vectorsE and F to obtaine and f i.e. e + f =
SLOG(E,F).

2) Alice computesℓiA = e − lnK, and Bob computes
ℓiB = f .



3) For j = 1, 2, . . . , d:
Let hj be theK-vector formed by thej-th elements of
x1, . . . ,xK . Alice and Bob engage in the secure logsum
protocol with vectorsE + lnhj andF to obtaine′ and
f ′ i.e. e′ + f ′ = SLOG(E + lnhj ,F).

• Notice that(e′ − e) + (f ′ − f) = lnµr+1
ij , the j-th

element ofµr+1
i .

Alice and Bob obtain thej-th elements ofµr+1
iA

and µr+1
iB respectively as a result ofSIP (exp(e′ −

e), exp(f ′ − f)).
4) Consider the evaluation ofσmn, themn-th element of

the matrixΣr+1
i . We first consider evaluating themn-

th element of(xk−µr+1
i )(xk−µr+1

i )T . As mentioned
earlier, this is equivalent to evaluating themn-th term
of (x̄k − µ̄i)(x̄k − µ̄i)

T , wherex̄k = (xk −µr+1
iA ) and

µ̄i = µr+1
iB . Let thej-th elements of̄xk and µ̄i be x̄kj

and µ̄ij respectively. Notice that Alice has access tox̄k

and Bob had access tōµi.
• For k = 1, . . . ,K, Alice and Bob engage

in the secure inner product protocol with
vectors exp(γk)[x̄kmx̄kn,−x̄km, x̄kn, 1] and
[1, m̄uin,−µ̄im, µ̄imµ̄in], where γk is a random
scalar chosen by Alice. Let Bob obtain the result
φk.

• Alice forms theK-vectorγ = [γ1, . . . , γK ] and Bob
forms the vectorφ = [φ1, . . . , φK ].

Alice and Bob engage in the secure logsum protocol
with vectors(E− γ) and(F + lnφ) to obtainē and f̄
i.e. ē+ f̄ = SLOG((E− γ), (F + lnφ)).

• Notice that(ē− e) + (f̄ − f) = lnσmn, themn-th
element ofΣr+1

i .
Alice sends(ē−e) to Bob so that he can calculateσmn.

At the end of all iterations, Alice sends her sharesµiA

andℓiA to Bob so that he can calculate the meanµi and the
mixture weightP (ωi) for i = 1, 2, . . . , c.
Efficiency: We only consider the cost of computations that
occur between Alice and Bob. In the E-step, for a givenxk

and for all classesωi, there arec(d+2) SIP calls with(d+1)-
dimensional vectors and oneSIP call involving ac-vector. In
the M-step, to compute a mixture weight, there is anSIP call
involving aK-vector. To calculate a single mean vector, there
are d SIP calls involvingK-vectors andd SIP calls with
scalars. To calculate each element of the covariance matrixfor
a given class, there areK SIP calls involving4-dimensional
vectors and oneSIP call with aK-vector.
Security: We assume thatk ≫ d andd > c. Until the end of
the last iteration, Bob does not learn values of the means or the
mixture weights. He does not learn the values of likelihoodsor
posterior probabilities during the iterations. He does learn the
value of the covariance matrix with every iteration. This does
leak some information about the distribution of Alice’s data
vectors but Bob’s aim is to learn the distributions. The goal
of Alice is to prevent Bob from knowing her individual data
vectors and without the mean, Bob cannot gain any knowledge
about the data vectors. Another important constraint is that
Alice does not learn the values of the parameters and following
the protocol closely shows that this holds true.

V. H IDDEN MARKOV MODELS

A. The Forward-Backward Procedure

Consider the forward variableαt(i) defined as

αt(i) = P (x1x2 . . .xt, qt = Si|λ) (16)

We can solve forαt(i) inductively and calculateP (X|λ) as
follows:

1) Initialization:

α1(i) = πibi(x1), 1 ≤ i ≤ N

Input : Bob has the gaussian mixture distribution that
definesbi(x) and the initial state distributionπ = {πi};
Alice has an observationx1.
Output : Alice and Bob obtain vectorsQ and R such
thatQi +Ri = lnα1(i).

a) Bob forms the matricesWij as mentioned in sec-
tion IV-B. With matricesWij and mixture weights
cjm as Bob’s inputs andx1 as Alice’s input, they
perform steps 1 and 2 of the protocol MoG of
section IV-B. Alice and Bob obtain vectorsU and
V. Notice thatUi + Vi = ln bi(x1).

b) Alice forms the vectorQ = U. Bob forms vector
R, where for eachi, Ri = Vi + lnπi. Thus,Qi +
Ri = ln bi(x1) + lnπi = lnα1(i).

2) Induction:

αt+1(j) =
(

N
∑

i=1

αt(i)aij

)

bj(xt+1)

where 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N

Input : Alice and Bob have vectorsQ andR such that
Qi + Ri = lnαt(i). Alice and Bob haveUj and Vj

such thatUj + Vj = ln bj(xt+1). Bob has the vector
aj = [a1j , a2j , . . . , aNj ].
Output : Alice and Bob obtainQ̄ and R̄ such thatQ̄+
R̄ = lnαt+1(j).

a) Alice and Bob engage in the secure logsum pro-
tocol with vectorsQ and(R + lnaj) to obtainy′

andz′ i.e. y′ + z′ = SLOG(Q,R + lnaj).
b) Alice obtainsQ̄ = y′ + Uj and Bob obtains̄R =

z′ + Vj .

3) Termination:

P (X|λ) =
N

∑

i=1

αT (i).

Input : Alice and Bob have vectorsQ andR such that
Qi + Ri = lnαT (i).
Output : Alice and Bob obtainy andz such thaty+z =
lnP (X|λ).

a) Alice and Bob engage in the secure logsum pro-
tocol with vectorsQ andR to obtainy andz i.e.
y + z = SLOG(Q,R).

Efficiency: In the initialization step, there are(d+ 2)MN +
N SIP calls andN SMAX/SVAL calls involving d-
dimensional vectors. In the induction step, for everyj and
for every t, there is oneSIP call with anN -vector. In the



termination step, there is oneSIP call with anN -vector.
Security: Bob does not learn anyxk and Alice does not
learn any of Bob’s parameters. Hence, if the primitivesSIP ,
SMAX andSV AL are secure, the protocol is secure.

We can obtain a similar procedure for a backward variable
βt(i) defined as

βt(i) = P (xt+1xt+2 . . .xT |qt = Si, λ) (17)

We can solve forβt(i) inductively as follows:

1) Initialization:

βT (i) = 1, 1 ≤ i ≤ N

2) Induction:

βt(i) =

N
∑

j=1

aijbj(xt+1)βt+1(j),

where t = T − 1, T − 2, . . . , 1, 1 ≤ j ≤ N

Input : Alice and Bob have vectorsY andZ such that
Yj + Zj = lnβt+1(j). Alice and Bob haveU and V

such thatUj + Vj = ln bj(xt+1). Bob has the vector
a′

i = [ai1, ai2, . . . , aiN ].
Output : Alice and Bob obtainȲ and Z̄ such thatȲ +
Z̄ = lnβt(i).

a) Alice and Bob engage in the secure
logsum protocol with vectorsY + U and
(Z + V + lna′

i) to obtain Ȳ and Z̄ i.e.
Ȳ + Z̄ = SLOG(Y + U,Z + V + lna′

i).

B. Viterbi Algorithm

Consider the quantity

δt(i) = max
q1,q2...qt−1

P [q1q2 . . . qt = Si,x1x2 . . .xt|λ] (18)

δt(i) is the best score (highest probability) along a single path,
at timet, which accounts for the firstt observations and ends
in stateSi. The procedure for finding the best state sequence
can be stated as follows:

1) Initialization:

δ1(i) = πibi(x1), ψ1(i) = 0 1 ≤ i ≤ N

The procedure is evaluatingδ1(i) is analogous to the
initialization step of the forward backward procedure.
After this step, Alice and Bob will have additive shares
of ln δ1(i).

2) Recursion:

δt(j) =
(

max
1≤i≤N

[δt−1(i)aij ]
)

bj(xt)

ψt(j) = argmax1≤i≤N [δt−1(i)aij ]

where 2 ≤ t ≤ T, 1 ≤ j ≤ N

Input : Alice and Bob have vectorsQ andR such that
Qi + Ri = ln δt−1(i). Alice and Bob haveU and V
such thatU + V = ln bj(xt). Bob has the vectoraj =
[a1j , a2j , . . . , aNj ].

Output : Alice and Bob obtainQ̄ and R̄ such thatQ̄+
R̄ = ln δt(j). Alice obtainsψt(j).

a) Alice and Bob engage in the secure maximum
value protocol with vectorsQ and (R + lnaj) to
obtainy andz. They also performSMAX on the
same vectors and Alice obtains the result which is
equal toψt(j).

b) Alice computesQ̄ = y + U and Bob computes
R̄ = z + V .

3) Termination:

P ∗ = max
1≤i≤N

[δT (i)] q∗T = argmax1≤i≤NδT (i).

Alice and Bob will useSV AL on their additive shares
of ln δT (i) for all i to evaluatelnP ∗. Similarly, they
engage inSMAX on their shares and Alice obtains the
resultq∗T .

4) Path backtracking:

q∗t = ψt+1(q
∗
t+1) t = T − 1, T − 2, . . . , 1.

Alice, who has access toqt and ψt, can evaluate the
path sequence. Notice that Bob could be made to get
this result instead of Alice if we let Bob learn the values
of ψt andqt in steps 2 and 3 instead of Alice.

Security and efficiency considerations for this protocol are
similar to what was discussed with regard to the Forward
Backward procedure (section V-A).

C. HMM Training

In the above formulation, we assumed that Bob had already
trained his HMMs. Let us consider the case when Alice has
all the training data and Bob wants to train a HMM using
her data. Below, we show how Bob can securely reestimate
parameters of his HMM.

Consider the variables

γt(i) = P (qt = Si|X, λ) =
(αt(i)βt(i))

P (X|λ)

ξt(i, j) = P (qt = Si, qt+1 = Sj |X, λ)

=
(αt(i)aijbj(xt+1)βt+1(j))

P (X|λ)

In the previous subsections, we have shown how Alice and
Bob can obtain additive shares oflnαt(i) (Qi andRi), lnβt(i)
(Ȳ and Z̄), ln bj(xt+1) (Uj andVj ), lnβt+1(j) (Yj andZj)
and lnP (X|λ) (y and z). It is easy to see that using these
shares, Alice and Bob can compute additive shareset, gt and
ft, ht such thatet + ft = ln ξt(i, j) and gt + ht = ln γt(i).
Alice computesgt = Qi+Ȳ−y andet = Qi+Uj+Yj−y. Bob
computesht = Ri + Z̄−z andft = Ri +lnaij +Vj +Zj−z.

The variablesπi andaij can then be re-estimated as follows:

π̄i = γ1(i)

āij =

∑T−1
t=1 ξt(i, j)

∑T−1
t=1 γt(i)

.

Input : Alice and Bob have(T − 1)-vectorse andf such that
et +ft = ln ξt(i, j). They also have vectorsg andh such that



gt + ht = ln γt(i).
Output : Bob obtainsln āij .

1) Alice and Bob engage in secure logsum protocol with
vectorse and f to obtain ē and f̄ . They also engage
in the secure logsum protocol with vectorsg andh to
obtain ḡ and h̄ respectively.

2) Alice sends(ē−ḡ) to Bob. Bob computes(ē−ḡ)+(f̄−h̄)
to obtainln āij .

Notice that instead of Bob obtaining the final result, Alice and
Bob can have additive shares ofln āij . Protocols for forward-
backward and viterbi algorithms will then have to modified so
that Alice and Bob have additive shares of the vectorlnaj .

As for the gaussian mixture distributionsbi(x), Bob can
learn them from Alice’s data securely as we have shown in
section IV-C. We emphasize here that Bob does not learn all
the parameters in every iteration. He learns the mean vector
for every component gaussian only after the last iteration.
He does learn the covariance matrix in every iteration but
quantities used to calculate the covariance matrix are additive
shares which does not help him in inferring Alice’s data. The
example shown in section IV-C uses two parties but it can
be generalized to the case where Bob learns from multiple
parties. In that case, learned statistics are averaged and provide
an additional layer of security for the data providers.

VI. D ISCUSSION

In this section, we discuss the computational efficiency con-
siderations of protocols presented above. As mentioned earlier,
efficiency of the protocols was evaluated in terms of primitives
and absolute measures were not provided. This is due to the
fact that efficiency of the primitives themselves varies widely
and depends on how the primitives are implemented.

If one follows all the protocols carefully, efficiency mainly
depends on the computational complexity of theSIP primi-
tive. We shall focus on one particular implementation of this
primitive: secure inner product using homomorphic encryption
proposed by [9] (see appendix I, the reference provides proof
that the protocol is correct and secure).

To validate the secure model we ran experiments performing
learning and classification. The experiments were run using
a MATLAB implementation and tested both the Gaussian
mixture models and the hidden Markov models. Simulations
were performed twice using the secure and the non-secure
(traditional) methods. In all cases the results from both the
secure and non-secure simulations were numerically identical
as we have predicted. The secure versions were obviously
less efficient due to the increased computational cost of the
cryptographic operations and the increased network traffic.
We did not study the communications complexity in these
experiments and rather focused on the computational load,
which is the primary bottleneck [18]. One simulation used the
a generalized version [19] of the Paillier public-key scheme
[20]. We used cryptographic keys of 1024 bits and the cryp-
tosystem was implemented in Java. The computational load
of this algorithm coupled with a non-optimal implementation
resulted into a processing time per input vector in the order
of a few seconds. An alternative implementation using alge-
braic primitives, which leak some information but are more

computationally efficient, resulted into a significant speedup
of less than a second’s time processing per input vector. As
shown by the last experiment, the choice of implementation
for a primitive (for example,SIP using algorithm in appendix
I instead ofSIP using algorithm in appendix II) significantly
impacts performance, communication complexity and security.
A wise choice will have to balance tradeoffs such as compu-
tational efficiency and network bandwidth as opposed to secu-
rity/privacy. A discussion of these issues is out of the scope of
this paper since it is a lengthy research project of its own and a
moving target given the continuous discoveries of increasingly
efficient protocols by the cryptography community.

The figures we have obtained were using non-optimized
implementations, as noted by [18] careful implementation can
produce significant speedups in computation. For practical
implementations it is also possible (and recommended) that
specialized hardware is used for the cryptography layer which
can result into dramatic performance improvements.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an implementation of pri-
vacy preserving hidden Markov model and Gaussian mixtures
computations. We first proposed a simple privacy-preserving
protocol for computing logsums. Using primitives for comput-
ing scalar products and maxima, we proposed secure protocols
for classification using Gaussian mixture models. We then
proposed secure protocols for theforward-backwardalgo-
rithm, theviterbi algorithm and HMM training. The protocols
are defined modularly in terms of primitives so that future
advances in cryptography, which will hopefully provide more
robust and efficient protocols, can be readily employed in our
framework by straightforward replacement. The approach we
have taken also illustrates the process required to transform a
signal processing algorithm to its privacy preserving version.
Other data processing and classification algorithms can also
be described in terms of secure primitives and and easily
reformulated for secure multiparty computations.

This paper is intended to be a starting point for secure
audio frameworks and because of that it exposes a lot of
new research directions which warrant more attention. One of
these directions includes the design of alternative classifiers
and algorithms using this process, and there is still ongoing
work on the building block primitives (SIP , SMAX , SV AL,
etc) themselves. These are all topics that present plenty of
opportunities to explore efficiency and security and their
tradeoffs. We expect these to be fruitful areas of research in
the near future. It is our hope that a migration towards secure
algorithms can help promote a more open collaboration setting
where parties can freely exchange data and algorithms without
legal and privacy issues.

The authors would like to acknowledge the help and influ-
ence of Shai Avidan in the making of this work. The authors
also wish to thank anonymous reviewers for their comments
and suggestions.



APPENDIX I
SECURE INNER PRODUCT USINGHOMOMORPHIC

ENCRYPTION

The following protocol is based on homomorphic encryp-
tion and was proposed by [9]. Let the triple (Ge, En, De)
denote a public-key homomorphic cryptosystem (probabilistic
polynomial time algorithms for key-generation, encryption
and decryption). The key generation algorithm generates a
valid pair (sk, pk) of private and public keys for a security
parameterk. The encryption algorithmEn takes as an input a
plaintextm, a random valuer and a public keypk and outputs
the corresponding ciphertextEn(pk; m, r). The decryption
algorithm De takes as an input a ciphertextc and a private
key sk (corresponding to the public keypk) and outputs a
plaintextDe(sk; c). It is required thatDe(sk; En(pk; m, r))
= m. A public-key cryptosystem ishomomorphicif En(pk;
m1, r1)·En(pk; m2, r2) = En(pk; m1 +m2, r1 + r2), where
+ is a group operation and· is a groupoid operation.

Inputs: Private vectorsx and y with Bob and Alice
respectively.
Outputs: Sharesa andb such thata+ b = xT y.

1) Setup phase. Bob:

• generates a private and public key pair (sk, pk).
• sendspk to Alice.

2) For i ∈ {1, . . . , d}, Bob:

• generates a random new stringri.
• sendsci = En(pk; xi, ri) to Alice.

3) Alice:

• setsz ←
∏d

i=1 c
yi

i .
• generates a random plaintextb and a random nonce
r′.

• sendsz′ = z·En(pk; −b, r′) to Bob.

4) Bob computesa = De(sk; z′) = xTy − b.

See [9] for a proof that the protocol is correct and secure.

APPENDIX II
SECURE INNER PRODUCT FROMOBLIVIOUS POLYNOMIAL

EVALUATION

[8] proposes an elegant protocol for oblivious evaluation
of multivariate polynomials using oblivious transfer [21]as a
cryptographic primitive. It can be easily modified to securely
evaluate dot products. Let Alice represent eachxi as xi =
∑

j aij2
j−1 with aij ∈ {0, 1}. Let vij = 2j−1yi. Notice that

for eachi, 1 ≤ i ≤ d,
∑

j aijvij = xiyi. The idea is to have
Bob preparevij and have Alice get thosevij with aij = 1 in
some secret way. This is achieved as follows: Bob prepares
the pair(rij , vij +rij) for randomly chosenrij and Alice runs
independent Oblivious Transfer with Bob to getrij if aij = 0
andvij + rij otherwise. At the end of the protocol, Alice will
obtain

∑

i

∑

j(aijvij + rij) =
∑

i xiyi +
∑

i,j rij . Bob will
have−

∑

i,j rij . Thus, Alice and Bob will have additive shares
of the desired dot product.

[8] proves that this protocol is secure when the parties are
semi-honest. The efficiency of the protocol depends on the
implementation of oblivious transfer.

APPENDIX III
SECURE INNER PRODUCT USINGL INEAR

TRANSFORMATION

[11] proposes an algebraic approach which assumes that the
dimensionality is even. Let us definex1 as thed/2 dimensional
vector consisting of the firstd/2 elements ofx andx2 as the
vector consisting of the lastd/2 elements ofx. We observe
that xT y = xT

1 y1 + xT
2 y2. Alice and Bob jointly generate a

random invertibled×d matrixM . Alice computesx′ = xTM ,
splits it asx′

1 and x′
2 and sendsx′

2 to Bob. Bob computes
y′ = M−1y, splits it asy′

1 and y′
2 and sendsy′

1 to Alice.
Alice computesx′

1y
′
1 and Bob computesx′

2y
′
2 so that their

sum is equal to the desired result.
This protocol has little communication and computational

overhead compared to the cryptographic protocols but it comes
at the cost of security. Alice and Bob learnd/2 linear equations
for the d unknowns that constitute the other party’s vector
which leaks a lot of information. Hence, it is important that
the same matrixM should be used when this protocol is used
multiple times with the same vectorx (or y). [3] has analyzed
this protocol which showed serious security flaws and hence
this is not practical when security is crucially important.

APPENDIX IV
PERMUTE PROTOCOL

This protocol was proposed in [15].
Input : Alice and Bob haved-component vectorsx and y.
Bob has a random permutationπ.
Output : Alice and Bob obtain q and s such that
q + s = π(x) + π(y).

1) Alice generates public and private keys for a homomor-
phic cryptosystem and sends the public key to Bob. Let
E() denote encryption with Alice’s public key.

2) Alice encrypts each element ofx and sends the resulting
vector x̄ to Bob.

3) Bob generates a random vectorr and computes a new
vector θ where θi = x̄iE(ri) = E(xi + ri), for i =
1, . . . , d.

4) Bob permutesθ and sendsπ(θ) to Alice. Alice decrypts
the vector to obtainq.

5) Bob computesy − r and then permutes it usingπ to
obtains = π(y − r).

Alice and Bob engage in the above permute protocol twice,
the second time with their roles interchanged. After this is
done, Alice and Bob will have two vectors whose sum will be
a random permutation of the original sum but neither of them
will know what the permutation is.
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