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Abstract— In this paper we present a process which enables transcription from both the service provider and malicious
privacy-preserving speech recognition transactions beteen two network intruders.
parties. We assume one party with private speech data and one Strange as these constraints might seem, they can be

arty with private speech recognition models. Our goal is to e . . .
2naa)/le thesF()e partiespto performga speech recognitiongtask iy satisfied using secure multiparty computation (SMC) proto-

their data, but without exposing their private information to COIs. SMC is a field of cryptography that provides means
each other. We will demonstrate how using secure multiparty to perform arbitrary computations between multiple partie
computation principles we can construct a system where this who are concerned with protecting their data. The field of

transaction is possible, and how this system is C(_)mputati(alﬂy SMC originated from the work of Yao [1] who gave a
and securely correct. The protocols described herein can besed lution to the millionair roblem: two millionaires want
to construct a rudimentary speech recognition system and c¢a SO u_ 0 0_ e onairé probiem. two . onaires a_

easily be extended for arbitrary audio and speech processin 0 find which one has a larger fortune, without revealing

any specific numbers to each other. Recently this concept
has been employed for simple machine learning tasks such
as multiple parties performing k-means [2], computation of
means and related statistics from distributed databa$es {3
rudimentary computer vision applications [4]. See [5] for a
I. INTRODUCTION detailed treatment of the topic. In this paper we present &SM
formulation of training and evaluating HMMs as applied on
The widespread use of networking technology today hapeech data. To our knowledge this is the first application of
spawned an industry of online services. Business modgMC concepts for privacy constrained speech technology. We
based on client-server interactions are common place amill consider HMMs where the observations are modeled by
increasingly more prominent. Speech recognition couldyeasmixtures of Gaussians as is common in speech recognition
be a part of this trend where servers can provide speegfiplications. The main contributions in this paper are the
recognition services for remote clients. The private retugreation of privacy-preserving protocols that support €n
of speech data however is a stumbling block for such raixture model and HMM learning and evaluation, as well as
development. Individuals, corporations and governmergs @ secure method to combine these protocols so as to ensure
understandably reluctant to send private speech dataghrodata privacy.
a network to another party that cannot be trusted. In thi®pap The remainder of this paper is organized as follows. In
we address this issue and show how such a cooperative maggition 1l we formally introduce the problem at hand and
can be realized with no privacy leaks from any involved partjn section Ill we introduce the secure computation pringisiv
We will specifically focus on the realization of a hidderthat are employed for this task. Using these primitives, we
Markov model (HMM) in a secure framework that allowsdeal with the problem of secure classification using Gaussia
training and classification between multiple parties, some- mixtures in section IV and in section V we extend that
ing speech data and some owning HMM models for speetth present protocols for secure HMMs. We provide a brief
recognition. Our formulation is shaped in such a way that tliéscussion about security and efficiency of our protocols in
providers of the speech will not have to share any infornmatigection VI. Finally in section VIl we provide conclusionsdan
about their data and the providers of the HMM will not shardirections for future extensions.
any information on their model. After evaluation the result
will only be revealed to the parties that have provided the Il. PROBLEM FORMULATION
data, and not to the parties that provide the HMM models, Hidden Markov models find use in a wide range of applica-
thereby providing privacy at both the data and the semantions, and have been successfully used in speech recagnitio
levels. There are three fundamental problems for HMM design,
We will demonstrate the use of this idea using two scenario'amely: the evaluation of the probability (or likelihood) @
One scenario will involve the training of HMMs from datasequence of observations given a specific HMM; the determi-
provided by multiple parties, and the other will deal wittakv nation of a best sequence of model states; and the adjustment
uating already trained HMMs on data from another party. Thid model parameters so as to best account for the observed
utility of these scenarios in collaborative speech rectigmi signal. The first problem is one of scoring how well a given
projects is easy to see. The first scenario can enable moaedel matches a given observation sequence. The second
training on multiple speech databases without requirirgy tiproblem is one in which we attempt to uncover the hidden part
disclosure of actual speech data, whereas the other soenafithe model. The third problem is the problem of “training”.
can enable speech recognition as a service model to remalgorithms for the above three problems are well known and
customers who wish to maintain privacy on their data and thelescribed in detail in [6].

Index Terms— Secure Multiparty Computation, Gaussian Mix-
ture Models, HMM, Speech Recognition.
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We will consider these problems using a transaction between a 1 [ ] ALICE
two parties named Alice and Bob. Suppose Bob has a trained | ! |

HMM with all the model parameters learned. Let the HMM . senn| | .
be characterized as follows: ]

o N states{Si,...,Sn}. Let the state at time be ¢;.

« The state transition probability distributioA = {a;;} | ]| g atcommmM
where b (I L] BOB
aij = Plgi+1 = Silge = Si],  1<4,j<N. (1)

. - L . . Fig. 1. Implementing an algorithm securely. The algoritrakes in private
« The observation symbol probability distribution in Stat'r:'nputSa and b. Algorithm is split into steps that can be implemented as

j given by a mixture of Gaussians secure primitives (shown as grey boxes). Intermediateltecate distributed
as random additive shares and feed into the following stéjpsl resultc is
obtained by both parties (or the designated receiver).

M
bj(X) = Z ijN(ij, Zj7n)7 1 S j S N7 (2)
m=1

wherex is the variablec;,, is the mixture coefficient
for the m-th mixture in statej, and N (fjm, X;m) is @
gaussian with mean vectqt;,, and covariance matrix
Yim.

» The initial state distributionr = {m;} where

f(a,b). Consider a trusted third-party who can take the private
data, compute the resutt= f(a,b), and intimate the result
to the parties. Any protocol that implements an algorithm
to calculatef(a,b) is said to besecureonly if it leaks no
more information about andb than what one can gain from
m; = Plgn = S 1<i<N. (3) learning the result from the trusted third-party. We assume

. a semi-honesmodel for the parties where they follow the
We use) to denote the entire parameter set of the model. rotocol but could be saving messages and intermediatkgesu

HJ&nSI'?Er Tlr]teh first tc\;v? problen:s Wlhere %Obl_ htazl'a trsm«% learn more about other’s private data. In other words, the
with all the model paramelers fearned. Let Alice avﬁarties arehonest but curiouand will follow the agreed-upon

an obs_ervauon SequencE = xix;...xr. We wil _S_hOW protocol but will try to learn as much as possible from the
how Alice can securely computB(X|\), the probability of data flow between the parties

Lhe I?Vt\)/sijrv?tmn dsiqu\(/a\?c\(la\/iﬁlvlen thﬁ Tvok?evl\; uilngdward—r I To implement an algorithm securely, we will have to im-
ackwardprocegure. Ve also SNoW NOW ONE can SeCUrey, ot each step of the algorithm securely. If one of the

Ea:)?-tm best sequence of model states usingvitebi steps is insecurely implemented, either party could watittze
gorithm. information to work their way backwards to gain knowledge

Once there is a secure way of computing likelihoods, [%bout the other’s private data. In addition, one must also

'S easr)]/ to see_fhowgt can beBeEter:ndetd FO 3ppl|catlolnli'\lll nsider the results of intermediate steps. If such resilts
sheech recognition. SUuppose Bob has trained severa Ihtermediate steps are available, there is a possibildy ¢dime

which characterize various speech sounds. Each HMM wj] - . .
correspond to a speech recognition unit. Let Alice’s otmerv& .:|d also get back to the original private inputs. To préven
tion vector correspond to a small snippet of speech sound (we ™ ) i
assume that Alice knows the features that Bob has used t¢ W& €xpress every step of the algorithm in terms of a hand-
train his HMMs on and has represented her sound sample in ful Of basic operations (henceforth called psmitivey
terms of those features). We then show how Alice and Bob can fOr which secure implementations are already known, and
obtain additive shares of the likelihood of Alice’s obsdiva « we distribute intermediate results randomly between the
sequence for every speech recognition unit of Bob and use two parties such that heither party ha; access to the entire
them to find out the unit that corresponds to Alice’s sound 'esult. For example, instead of obtaining the resuif
snippet. a certain step, the parties recemdom additive share_s
Now consider the third problem of training. The problem of ~ #1 @nd 22 (21 + 22 = 2). See figure 1 for a schematic
security arises when Bob wants to train a HMM (or do data 'lustration.
mining in general) on combined data from private databasesSecure protocols are often analyzed for correctness, igecur
owned by Alice and Charlie. We show how Bob can secure@nd complexity. Correctness is measured by comparing the
reestimate parameters of his HMM without gaining knowledg&roposed protocol with the ideal protocol using a third yart
about the private data. The implicit assumption, of coursé the results are indistinguishable, the protocol is cor(aote
is that Alice and Charlie are willing to let Bob learn abouthat one can use secure approximation to an ideal algorithm)
distributions of their data. All the protocols we present are exact protocols. For seguri
one needs to show what can and cannot be learned from

I1l. SECURETWO-PARTY COMPUTATIONS; BACKGROUND 1 . . )
In a malicious modelno such assumptions are made about the parties’

The speech-recognition example that we will present isbahavior. If both parties are malicious, security can bereid by accom-
SpeCIfIC example Of gecure two_party Computatloﬁ:onSIder panying the prOtOCOIS with Zero-l_(nov_\/ledge_ pl’OOfS that qurOIS are being
. . followed. If only one of the parties is malicious, the othearty can use
the case where Alice and Bob have private datand b conditional disclosure of secrefrotocols [7] to make sure he/she receives
respectively and they want to compute the result of a functiealid inputs from the malicious party.



the data exchange. For complexity, one shows the compufa- Secure Maximum Valu&l AL)
tional and communication complexity of the secure algamnith | et Alice have a vectok = [z; ...z,] and Bob have the

Based on the choice of primitives used and how they &j@ctory = [y, ... y,], they would like to compute the value of
implemented, one can achieve different levels of securiffe maximum element i — x +y. After the protocol, Alice
and computational/communication efficiency. To evalul tang Bob receive additive shares of the resultand b, but
efficiency of protocols we propose in later sections, we Vv neijther party will know the index of the maximum element.
measures in terms of efficiency of the primitives instead @fotice that the same protocol can be used to compute the value
absolute measures. Below, we describe the primitives teat ¥ the minimum. Let us denote this ast b = SVAL(x,y).
use and briefly discuss about their implementations. For this protocol, we can use the idea presented in [15].
Let us first consider a naive approach. Notice that>
zj <= (x; —x;) > (y; — vi). Alice and Bob can do
A. Secure Inner ProductsS{ P) such pairwise comparisons and mimic any standard maximum
- . ) ._finding algorithm to learn the value of the maximum. To
The pr|m|t|ve which we use most often is for CorT‘pumgberform the comparisons securely, they can use a protocol fo
secure inner products. If Alice has vectoand Bob has vector Yao's millionaire problem [1].

y, a secuhrehinner produ;:t prolf[ocol 'ﬁroducr?s two Inumhers However, if Alice and Bob follow the above naive approach,
andb such thata +b = x"y. Alice will get the resulta and ), \will he able to also find the index of the maximum.

Bob will get the resulb. To simplify notation, we shall denote Hence, the idea is for Alice and Bob to obtain two vectors

a secure inner product computatigfiy as SIP(x,y). whose sum is a random permutationzofNeither Alice nor
Many protocols have been proposed and they can be ca@y should know the permutation. They can then follow
gorized as cryptographic protocols (eg. [8], [9]) and algéb the above naive approach on their newly obtained vectors
protocols (eg. [10], [11], [12], [13], [14]). They provideiy compute additive shares of the maximum element. See
different levels of security and efficiency. Most of the ddgsic appendix IV for a description of the permutation protocol.

protocols leak some information but are more straightfodva

and efficient than their cryptographic counterparts. TR®pr- p gecure LogsumS(LOG)

ties and weaknesses of some of these algebraic protocas ha\LI_h. imiti like the other th hich h .
been analyzed in detail ([3], [9]). In this paper we will be IS primitive, “Uniike the other three which we have in-

using cryptographic protocols as they tend to be more secdlrgduced above, is not a cryptographic primitive. The main

In appendices | and Il we provide a description of two of thEeason we introduce it is because it simplifies the presentat

cryptographic protocols we have used. We have also includ%]c many of the protocols we propose in future sections.

an algebraic protocol in appendix Il for comparison. et Alice have a vectok = [z; ... zq] and Bob have the
vectory = [y ...yq] suchthatkk+y =Inz = [lnz; ...In zg4].

They would like to compute additive shargsnd s such that
. g+s = ln(zfz1 z;). Let us denote this secure computation
B. Secure Maximum Index (1 AX) asq + s = SLOG(x,y).
Let Alice have a vectok = [z; ...z4] and Bob have the One can compute logarithm of a sum from the logarithms
vectory = [y . ..ya], they would like to compute the index©f individual terms as follows:

of the maximum ofx +y = [(z1 +y1) ... (x4 + yq)]. At the d d
(21 +y1) - (2 + ya)] I (Zm) . (Ze?"+y) (4)
=1

end of the protocol, Alice (and/or Bob) will receive the riésu

but neither party will know the actual value of the maximum. =1

Notice that the same protocol can be used to compute thel'his suggests the following protocol.

index of the minimum. We denote this gs= SMAX (x,y). 1) Alice and Bob compute the dot product between vectors
For this primitive, we use the permute protocol proposed by ~ €*~% ande¥ usingSIP(e*~?,¢¥) whereg is a random

[15] (see appendix IV). The protocol enables Alice and Bob to ~ number chosen by Alice. Let Bob obtaif the result

obtain additive sharesy ands, of a permutation of the vector of the dot product. J
x+y, m(x+y), wherer is chosen by Alice and Bob has no 2) Notice that Bob has =In¢ = —¢ +In(32;_, e™*%)
knowledge ofr. The idea is for Alice to send —r, wherer is and Alice has;.

a random number chosen by her, to Bob. Bob sends back thén step (3), Bob receives the entire result of a dot product.

index of the maximum element ef+s —r to Alice who then However, this does not reveal any information to him akout

computes the real index using the inverse of the permutatidue to the presence of the random numfpen no other step

m. Neither party learns the value of the maximum element addes either party receive the complete result of an operatio

Bob does not learn the index of the maximum element.  Thus, the protocol is secure. In terms of efficiency, this
If the security requirements of Alice are more strict, sherimitive is equivalent to using th&7P primitive once.

can encrypt elements af using a homomorphic encryption

scheme and send them to Bob along with the public key. Bob V. SECURE CLASSIFICATION: GAUSSIAN MIXTURE

can make comparisons among the encrypted value&ofy) MODELS

using protocols for Yao’s millionaire problem (eg. [16],7]) Alice has ad-component data vectax and Bob knows

and send back the index of the maximum element. multivariate gaussian distributions oV classesw;,i =



{1,..., N} that the vector could belong to. They would likeProtocol SMG: Single Multivariate Gaussian
to engage in a protocol that lets Bob classify Alice’s data bu Input : Alice has vectorx, Bob hasw; fori = 1,2,..., N.
neither of them wants to disclose data to the other person. We express the matri¥v; as [WIW2 . . Wit wherew?
propose protocols which enable such computations. is the j-th column of W,.
The idea is to evaluate the value of tiscriminant function Qutput: Alice learnsI such thatg; (x) > g;(x) for all j # I.
Bob learns nothing about.
9i(x) = Inp(x|w;) + In P(w;) ®) 1) Fori=1,2,....,N
a) Forj = 1,...,d + 1, Alice and Bob perform
SIP(x,W?) to obtain the vectors; = [a; ...
a1 andb; = [b} ... respectively. Alice
then computes; x.
b) Alice and Bob performSIP(b;,x) to obtaing;
andr; respectively.
2) Alice has vectorA = [(a;x+ ¢1) ... (anx + gn)] and
Bob has vectoB = [ry ...7x].
3) Alice and Bob perform the secure maximum index
protocol between the vectoss andB and Alice obtains
We assume that the distribution of data is multivariate T =SMAX(A,B).
gaussian i.ep(x|w;) ~ N(u;,X;), where p; is the mean  Correctness In step 1,a; and b; are vectors such that
vector andX; is the covariance matrix of class. Hence, the a; + b, = xTW,. Also, b;x = ¢; + r;. Hence,xTW;x is

for all classesv; and assignx to classw; if g;(x) > g;(x)
for all j # i. Here,p(x|w;) is the class-conditional probability
density function and®(w;) is thea priori probability of class
w;. We consider two cases where: (1) each class is modeled
as a single multivariate gaussian, and (2) each class ntdele
as a mixture of gaussians.

A. Case 1: Single Multivariate Gaussian

log-likelihood is given by: given bya;x + ¢; + ;. I is the value ofi for which xT'W;x
iS maximum.
I p(xfeor) = — S (x— ) 5 (% — i) — FIn2r — Sn |z, Efficiency: For a giveni = I, the above protocol hai + 2)
2 2 2 (6) SIP calls. Hence, it would takéV(d +2) SIP calls and one
call of SMAX.

Ignoring the constant terrtd/2) In 27, we can write equa-

tion (5) as: Security: If Bob gets to know the dot products dfdifferent

vectors withx, he can learrx completely. However, we see
that neither Bob nor Alice ever learn the complete result of
any dot product. Hence, if the protocols t8f P andSM AX

are secure, the above protocol is secure.

) = =5 (e ) B (e i) = 5 S0 Pwr) (7)

Simplifying, we have:
B. Case 2: Mixture of Gaussians

Let us now consider the case where each class is modeled
as a mixture of gaussians. Let the mean vector and covariance

gi(x) = xTW,;x + v'v?x + w;o (8)

where matrix of the j-th gaussian in class;j;]‘ be p;; and X;;
Wi- —32»-1 W= S, and Where, 15 e number of gausdans desorbing cissant

va = guTSC - SnIS] vp) (@) e e coefierts The g elhood o e
Let us create thdd + 1)-dimensional vectors and w; lij(x) = xTW,;x + V—V?J,)H_ wi; (11)

by appending the valugé to x and appendingv;y to w;. By
changingW; into a(d+1) x (d+1) matrix W; where the first
d components of the last row are zeros and the last column W,;

is equal tow!, we can express equation (8) in a simplified

form: wij =

where
Eil, V_Vij = Ezjluij, and
1 7y 1
—gHi; i s — 5 || + Inag
e Expressingk as a(d+1)-dimensional vector an®V,;, W,
gi(x) =% W;x w;; together as théd + 1) x (d + 1) matrix W,; as done in

) o _ the previous case, we can simplify equation (11) as:
Expressingx as x for simplicity, we can write the above

equation as: lij(x) = x"Wijx (12)
Hence, the discriminant function for theth class can be
gi(x) = logsun(li(x),...,lis(x)) +InP(w;)
Henceforth, we shall use to denote gd + 1)-dimensional J;
vector with the last component equal to 1 unless otherwise = In (Zelij(X)> + In P(w;) (13)
mentioned.

j=1



Protocol MoG: Mixture of Gaussians can write the steps of the EM algorithm as follows:

Input: Alice has vectorx, Bob hasW;; and P(w;) for
i=1,2,...,N,andj =1,2,...,J;.
Output: Alice learns! such thaty;(x) > g;(x) for all j # I. E Step:
Bob learns nothing about. News, ut, B0V PT (w;
. g P(wi|x, \") = Cp(xk|w,,,ul, rl) - (w:)
1) Fori=1,2,...,N > i1 P(xx|wy, pf, B5) Pr(w;)
a) Alice and Bob engage in steps 1 and 2 of Protocol T r ) , -
. . ) Input: Alice hasxy, u!, and/;4; Bob hasu!s, 37 and
SMG for the J; gaussians in theé-th mixture to lin 3:1 9 B Xk Hia 4 Hip: =i

olk;taln éectorsNAti_ :th[ftlj ,,,/;Ji] al”d Bi = Output: Alice and Bob obtairu;, and v;; such thatu, +
(B .J. Notice thatA;; + Bi; = Li; (x). Vi = In P(w;|xz, \7).

b) Alice and Bob engage in the secure logsum pro- ) .
) gag g P 1) Bob forms matricedV,; for i =1,...,c with pl5, 37

tocol with vectorsA; and B; to obtainu; and z; . . . . .
ie. u; + 2 = SLOG(A;, By) as described in section IV-A and equation (9) (using

(d/2)1In27 instead ofln P(w;) to computew;p). With

(xx — p,) as Alice’s input andW, for i = 1,....c

as Bob’s input andV = ¢, Alice and Bob engage in

steps 1 and 2 of Protocol SMG (section IV-A) to obtain

vectorsA), andBj,.

« Log-likelihood Inp(xy|w;, ul,X7) is given by

equation 6. Notice that usingk, — pl,) in place
of x;, and ul in place ofu] in equation 6 yields

(14)

2) Bob computes the vector = [v; ...vy] Wherev; =
z; + In P(w;). Alice forms the vectom = [u; ... upn].

3) Alice and Bob perform the secure maximum index
protocol between vectora and v and Alice obtains
I=SMAX(u,v).

Correctness If one follows the protocol carefully, it is easy
to see that; + v; is equal tog;(x)

Efﬁmency Fl?rtﬁ giveni, ther2e ar%.] (d+2) ’ SIPSIP”caIIsd the same result as using, and 7.
ence, in all, there aréd + Ji+ cafls an « The sum of thei-th elements A/, + B, , is equal
1 SMAX call. @ @

tol i, ok, 5T,
Security: If Protocol SMG and the protocols f&f/ P, SV AL npxlws, ui, 37

and SMAX are secure, the above protocol is secure. In 2) Allce'and Bob/obtaln vectora, anfi By, where for
case Alice and Bob want to compute additive shares of the eachi, 1_4““ = Ajj +tia and Bi’“ = By, + g_iB'
likelihood instead of the class label, they can use $heAL « Notice that A;;, + Bi; is the logarithm of the
protocol instead oM AX in the last step. numerator in equation 14.
3) Alice and Bob engage in the secure logsum protocol
with the vectorsA, and B, to obtainy, and z i.e.
« Notice thaty; + zi is the logarithm of the denom-
inator of equation 14 (follows from equation 4).

C. Training Gaussian Mixture from Data

We now focus on a related problem. Let us suppose Alice
hasK d-component vectors;, xs, ..., Xx. And she wants to
learn a mixture ok gaussians from the data. She can use the )
iterative expectation-maximizatiofEM) algorithm to estimate ~ 4) Alice forms vectoruy,, wherewi, = (Aik — yk). Bob
the parameters of the gaussians and the mixture weights. forms the vectow;,, wherev;, = (Bix — z1)

Now, consider the scenario when Bob wants to learn the o Uk + Vi = In P(w;[xp, A").

parameters but Alice does not want to disclose her data to Bob

One solution is for Alice to estimate the parameters herselfM Step:
and then give them to Bob. Another approach is for Alice

K r
and Bob to engage in a secure protocol which lets Bob learn ,r+1  — Zk?{l Pwilx, A)x
the parameters while Alice’s data remain private. The fatte > e Plwilxp, A7)
approach becomes necessary in a scenario where Bob wanthr1 ZkK—l P(wilx, A7)
to do data mining on combined data from private databasBs’ (wi) = K
owned by Alice and Charlie. Below, we describe a secure - . r
Y Sy P@ilxie A7) (k= 1) (e — )T

protocol which lets two parties perform such computations. z;“ = 7
> k=1 Plwilxp, A7)

EM algorithm (15)

We denote the estimate of a particular parameter afterlnput: Alice hasxy,k = 1,..., K. Alice and Bob have
the r-th iteration by using a superscript. Thys;, X7 and XK-vectorsE andF such thatF, + Fj = In P(wilxg, A").
P(w;) denote the mean vector, covariance matrix and tiRutput: Alice obtainsut', ¢;4; Bob obtainsu/}', 37"
mixture weight for thei-th gaussian after the-th iteration. andfip. (ui'+p/t' = p ' andlia+Lip = In P+ (w;)).
For convenience, let us denote the entire parameter set aftel) Alice and Bob engage in the secure logsum protocol

the r-th iteration by A". At any given iteration, Alice has with vectorsE and F to obtaine and f i.e.e + f =
access to her data and Bob has access to the parakgter SLOG(E,F).
Alice and Bob have additive shargg ,, p}z and 4,4, ¢;p 2) Alice computesl;4 = e — In K, and Bob computes

such thatu?, + p!p = p! and ;4 + l;p = In P"(w;). We lip = f.



3) Forj=1,2,...,d:

V. HIDDEN MARKOV MODELS

Let h; be theK-vector formed by thg-th elements of A The Forward-Backward Procedure

X1,...,Xg. Alice and Bob engage in the secure logsum
protocol with vectorsE 4+ Inh; andF to obtaine’ and
flie. e+ f =SLOGE+1Inh;,F).

« Notice that(e’ — e) + (f' — f) = Inpl", the j-th
element ofp/ ™.

Alice and Bob obtain thej-th elements ofu“rl
and M“ respectively as a result a§IP(exp(e’ —

e),exp(f — f)).

4) Consider the evaluation ef,,,,, the mn-th element of
the matrixX;*'. We first consider evaluating then-
th element of(xy, — ] ™) (xx — /)7, As mentioned
earlier, this is equivalent to evaluating then-th term
of (Xx — fu:)(Xx — ;)7 , wherex, = (x;, — pu/1") and
fi; = pit. Let thej-th elements ofk,, and ji; be zy;
andfi;; respectively. Notice that Alice has accesip
and Bob had access ;.

e« For £k = 1,...,K, Alice and Bob engage
in the secure inner product protocol with
vectors  exp(Vi) [TkmTrn, —Tkms Tkn, 1] and
[1, Min, —Lim, fimMin], Where v, is a random
scalar chosen by Alice. Let Bob obtain the result

1)

Pr.-
« Alice forms theK -vectory = [v4,...,vx] and Bob
forms the vectowp = [¢1,. .., dxk]. 2)

Alice and Bob engage in the secure logsum protocol
with vectors(E — ~) and (F + In ¢) to obtainé and f
i.e.e+ f=SLOG((E —~),(F +1n¢)).
« Notice that(é — e) + (f — f) = In ounp, themn-th
element ofs/ 1,
Alice sends(e —¢) to Bob so that he can calculatg,,,.

At the end of all iterations, Alice sends her shajes:
and/; 4, to Bob so that he can calculate the mganand the
mixture weightP(w;) fori=1,2,...,c.

Efficiency: We only consider the cost of computations that
occur between Alice and Bob. In the E-step, for a giwan
and for all classes;, there are:(d+2) SIP calls with (d+1)-
dimensional vectors and ort& P call involving ac-vector. In
the M-step, to compute a mixture weight, there isS4P call
involving a K -vector. To calculate a single mean vector, there
ared SIP calls involving K-vectors andd SIP calls with 3)
scalars. To calculate each element of the covariance nfatrix

a given class, there ai€ SIP calls involving4-dimensional
vectors and on&I P call with a K-vector.

Security: We assume that > d andd > c. Until the end of
the last iteration, Bob does not learn values of the meartseor t
mixture weights. He does not learn the values of likelihoods
posterior probabilities during the iterations. He doesrighe
value of the covariance matrix with every iteration. Thisdo
leak some information about the distribution of Alice’s alat
vectors but Bob's aim is to learn the distributions. The goal
of Alice is to prevent Bob from knowing her individual data

Consider the forward variable, (i) defined as

(i) = P(x1X2 ... X¢, gt = S;|N) (16)

We can solve fory (¢) inductively and calculate?(X|\) as
follows:

Initialization:
o (i) = mibi(x1), 1<i<N

Input: Bob has the gaussian mixture distribution that
definesb;(x) and the initial state distribution = {m;};
Alice has an observatioRr; .

Output: Alice and Bob obtain vector§ and R such
that Q;+Ri=Inay (Z)

a) Bob forms the matrice$V;; as mentioned in sec-
tion IV-B. With matricesW,;; and mixture weights
cjm as Bob’s inputs anc; as Alice’s input, they
perform steps 1 and 2 of the protocol MoG of
section IV-B. Alice and Bob obtain vectof§ and
V. Notice thatU; + V; = Inb;(x1).

b) Alice forms the vectoQ = U. Bob forms vector
R, where for each, R; = V; + Inw;. Thus,Q; +
R, = 1nbi(X1) +Inm; = lnal(i).

Induction:

Oét+1 (E Oét azg) Xt+1)

where 1§t§T—1,1§]§N

Input: Alice and Bob have vector€) andR such that
Qi + R; = Inwy(i). Alice and Bob havel/; and V;
such thatU; + V; = Inb;(x¢41). Bob has the vector
aj:[alj,agj,...,aNj]. B B B
Output: Alice and Bob obtainy) and R such thatQ +
R = 11105t+1(j).

a) Alice and Bob engage in the secure logsum pro-
tocol with vectorsQ and (R +1na;) to obtainy’
andz’ i.e.y + 2 = SLOG(Q,R + Ina;).

b) Alice obtainsQ = y’ + U; and Bob obtaing? =
2+ V.

Termination:

X|/\ ZOéT

Input: Alice and Bob have vector§ andR such that
Qi+ R; =Inar(i).
Output: Alice and Bob obtairny andz such thaty+ 2z =
In P(X|A).
a) Alice and Bob engage in the secure logsum pro-
tocol with vectorsQ and R to obtainy andz i.e.
y+2=SLOG(Q,R).

vectors and without the mean, Bob cannot gain any knowledg#iciency: In the initialization step, there argl + 2) M N +
about the data vectors. Another important constraint i$ th& SIP calls and N SMAX/SV AL calls involving d-
Alice does not learn the values of the parameters and faligwidimensional vectors. In the induction step, for evgrand
the protocol closely shows that this holds true. for everyt, there is oneSIP call with an N-vector. In the



termination step, there is orfe/ P call with an N-vector.

Security: Bob does not learn ank; and Alice does not

learn any of Bob’s parameters. Hence, if the primitis&sP,
SMAX and SV AL are secure, the protocol is secure.

We can obtain a similar procedure for a backward variable

B:(i) defined as
6f(l) = P(xt+1xt+2 .. -XT|qt = Si, A) (17)

We can solve fos, (i) inductively as follows:
1) Initialization:

2) Induction:
N
B (i) = Z aijbj(Xt+1)Bi+1(7),
j=1
where t=T-1,T—-2,...,1, 1<j<N

Input: Alice and Bob have vector¥ andZ such that

Y; + Z; = Inf41(j). Alice and Bob haveU and V

such thatU; + V; = Inb;(x.+1). Bob has the vector

a;:[ailaaiQ;---aaiN]- _ _ _
Output: Alice and Bob obtainy” and Z such thatt” +
Z =In ﬂt (Z)

a) Alice and Bob engage in the

logsum protocol with vectorsY + U and

(Z + V + Inaj) to obtain Y and Z i.e.
Y + 7 =SLOG(Y +U,Z+V +1Ina)).

B. Viterbi Algorithm
Consider the quantity

0t(i) = max Plqiga...q = Si,X1X2 ... X¢|A]

q1,92---qt—1

d:(7) is the best score (highest probability) along a single path,
at timet, which accounts for the firgtobservations and ends

3)

4)

Output: Alice and Bob obtain) and R such thatQ +
R =1nd(j). Alice obtainsyy ().

a) Alice and Bob engage in the secure maximum
value protocol with vector§) and (R +Ina;) to
obtainy andz. They also perforn M AX on the
same vectors and Alice obtains the result which is
equal toyy(y).

b) Alice computes) = y + U and Bob computes
R=z+V.

Termination:

P* = max [6r(i)]

nax qr = argmagSiSNéT(z).

Alice and Bob will useSV AL on their additive shares
of Indr(z) for all ¢ to evaluateln P*. Similarly, they
engage inSM AX on their shares and Alice obtains the
resultgs;..

Path backtracking:

Q;:¢t+1(qr+1) t:T—].,T—2,,1

Alice, who has access tg, and v, can evaluate the
path sequence. Notice that Bob could be made to get
this result instead of Alice if we let Bob learn the values
of ¢, andgq; in steps 2 and 3 instead of Alice.

Security and efficiency considerations for this protoca ar

SeCUNGimilar to what was discussed with regard to the Forward

Backward procedure (section V-A).

C. HMM Training

In the above formulation, we assumed that Bob had already
trained his HMMs. Let us consider the case when Alice has
all the training data and Bob wants to train a HMM using

her data. Below, we show how Bob can securely reestimate

(18) parameters of his HMM.

Consider the variables

in stateS;. The procedure for finding the best state sequence

can be stated as follows:
1) Initialization:

51(2):7@1)%(){1), 1/)1(2)20 ].SZSN

The procedure is evaluating () is analogous to the
initialization step of the forward backward procedur
After this step, Alice and Bob will have additive shares

of Ind; (Z)
2) Recursion:
a(j) = ( @%\,[&—1 (i)aij]) bj(x¢)
Ye(4) = argmax—,y[6i—1(i)as;]
where 2<t<T,1<j<N

Input: Alice and Bob have vector§ andR such that

Q; + R; = Iné;—1 (7). Alice and Bob havel/ and V
such thatU + V' = Inb;(x;). Bob has the vectos; =

[alj,agj, .. .,CLNj].

N _q _ ()4 (4))
fYt(Z) - P(Qt - Sz|X7 )‘) - P(X|)\)
&(isj) = Pla = Siqe1 = 551X, A)

(a¢(i)aibj(xe41)Be1(4))
P(X]A)

In the previous subsections, we have shown how Alice and
Bob can obtain additive shareslafo, (i) (Q; andR;), In 5:(7)

e(.}7 and Z), Inb;(x41) (U; andV;), In f41(j) (¥; and Z;)
andIn P(X|\) (y and z). It is easy to see that using these

Shares, Alice and Bob can compute additive shayeg; and
ft» he such thate; + f; = In&:(4,5) and g + hy = Iny;(4).
Alice computegy; = Q;+Y —y ande; = Q;+U;+Y;—y. Bob
computesi, = R;+Z —zandf; = Ri+Ina;; +V;+Z; — 2.

The variablesr; anda;; can then be re-estimated as follows:

o= m()
o~ X &)
’ i i)

Input: Alice and Bob haveT — 1)-vectorse andf such that
et + fr = In& (i, 7). They also have vectogsandh such that



gt + he = Iny (). computationally efficient, resulted into a significant spge
Output: Bob obtainsln a;. of less than a second’s time processing per input vector. As
1) Alice and Bob engage in secure logsum protocol witthown by the last experiment, the choice of implementation
vectorse and f to obtainé and f. They also engage for a primitive (for exampleS P using algorithm in appendix
in the secure logsum protocol with vectggsandh to | instead ofSIP using algorithm in appendix I1) significantly

obtaing andh respectively. impacts performance, communication complexity and securi
2) Alice sendgé—g) to Bob. Bob compute&—g)+(f—h) A wise choice will have to balance tradeoffs such as compu-
to obtainln a,;. tational efficiency and network bandwidth as opposed to-secu

Notice that instead of Bob obtaining the final result, Aligela rity/privacy. A discussion of these issues is out of the scop
Bob can have additive shareslafa,;. Protocols for forward- this paper since it is a lengthy research project of its owthan
backward and viterbi algorithms will then have to modified sBoving target given the continuous discoveries of incregigi
that Alice and Bob have additive shares of the vettos;. ~ efficient protocols by the cryptography community.

As for the gaussian mixture distributiorts(x), Bob can  The figures we have obtained were using non-optimized
learn them from Alice’s data securely as we have shown implementations, as noted by [18] careful implementatian ¢
section IV-C. We emphasize here that Bob does not learn plbduce significant speedups in computation. For practical
the parameters in every iteration. He learns the mean vedi@plementations it is also possible (and recommended) that
for every component gaussian only after the last iteratiogpecialized hardware is used for the cryptography layeckvhi
He does learn the covariance matrix in every iteration bgan result into dramatic performance improvements.
guantities used to calculate the covariance matrix aretigddi
shares which does not help him in inferring Alice’s data. The
example shown in section IV-C uses two parties but it can
be generalized to the case where Bob learns from multiple VII. CONCLUSIONS AND FUTURE WORK
parties. In that case, learned statistics are averagedrauile

an additional layer of security for the data providers. In this paper we have presented an implementation of pri-

VI. DISCUSSION vacy preserving hidden Markov model and Gaussian mixtures
ﬁomputations. We first proposed a simple privacy-presgrvin

In this section, we discuss the computational efficiency co rotocol for computing loasums. Using primitives for corou
siderations of protocols presented above. As mentionetim%zr.aar.p puting log ' 9p rp

efficiency of the protocols was evaluated in terms of privei ing scalar products and maxima, we proposed secure prstocol

and absolute measures were not provided. This is due to {Rre classification using Gaussian mixture models. We then

fact that efficiency of the primitives themselves varies etyd proposed secure prqtocols for trierwa_rd_—backwardalgo—
and depends on how the primitives are implemented. rithm, theviterbi algorithm and HMM training. The protocols

If one follows all the protocols carefully, efficiency mayn! are defined modularly in terms of primitives so that future

depends on the computational complexity of $EP primi- advances in cryptography, which will hopefully provide mor

tive. We shall focus on one particular implementation o thirObUSt and efficient protocols, can be readily employed in ou

primitive: secure inner product using homomorphic endoypt framework by straightforward replacement. The approach we

proposed by [9] (see appendix I, the reference providesfpr(;bave taken alsp |I|ustrat.es the process required tq trqngo
that the protocol is correct and secure). signal processing al'gonthm to |ts.pr|vgcy preserving iers

To validate the secure model we ran experiments performiﬁ her daFa processing and classmca_tlo_n. algorithms cam a!s
learning and classification. The experiments were run usi described in terms of secure pr|m|t|ves_ and and easily
a MATLAB implementation and tested both the Gaussialr ormulated for secure multiparty computations.
mixture models and the hidden Markov models. Simulations This paper is intended to be a starting point for secure
were performed twice using the secure and the non-secakslio frameworks and because of that it exposes a lot of
(traditional) methods. In all cases the results from both tfewW research directions which warrant more attention. Gne o
secure and non-secure simulations were numerica”y Mntithese directions includes the deSign of alternative dlassi
as we have predicted. The secure versions were obvioudRd algorithms using this process, and there is still orgjoin
less efficient due to the increased computational cost of th®rk on the building block primitives{/ P, SMAX, SV AL,
cryptographic operations and the increased network traffRiC) themselves. These are all topics that present plenty of
We did not study the communications complexity in thes@Pportunities to explore efficiency and security and their
experiments and rather focused on the computational lodgdeoffs. We expect these to be fruitful areas of research i
which is the primary bottleneck [18]. One simulation useel tithe near future. It is our hope that a migration towards secur
a generalized version [19] of the Paillier public-key scleenflgorithms can help promote a more open collaboratiomggtti
[20]. We used cryptographic keys of 1024 bits and the Crypyhere parties can freely exchange data and algorithms utitho
tosystem was implemented in Java. The computational lo&gal and privacy issues.
of this algorithm coupled with a non-optimal implementatio The authors would like to acknowledge the help and influ-
resulted into a processing time per input vector in the ordence of Shai Avidan in the making of this work. The authors
of a few seconds. An alternative implementation using algalso wish to thank anonymous reviewers for their comments
braic primitives, which leak some information but are morand suggestions.



APPENDIX | APPENDIXIII
SECUREINNER PRODUCT USINGHOMOMORPHIC SECUREINNER PRODUCT USINGLINEAR
ENCRYPTION TRANSFORMATION

The following protocol is based on homomorphic encryp- [11] proposes an algebraic approach which assumes that the
tion and was proposed by [9]. Let the tripl&g, En, De) dimensionality is even. Let us defig as thed/2 dimensional
denote a public-key homomorphic cryptosystem (probailuilis vector consisting of the firsf/2 elements ok andx, as the
polynomial time algorithms for key-generation, encryptiovector consisting of the last/2 elements ofx. We observe
and decryption). The key generation algorithm generatesthatx”y = x7'y; + x%'y,. Alice and Bob jointly generate a
valid pair §k, pk) of private and public keys for a securityrandom invertiblel x d matrix M. Alice computesc’ = x” M,
parametek. The encryption algorithniEn takes as an input a splits it asx} and x}, and sends} to Bob. Bob computes
plaintextm, a random value and a public keyk and outputs y’ = M 'y, splits it asy; andy} and sends/; to Alice.
the corresponding cipherten(pk; m,r). The decryption Alice computesx}y} and Bob computes)y’, so that their
algorithm De takes as an input a ciphertextand a private sum is equal to the desired result.
key sk (corresponding to the public kgyk) and outputs a  This protocol has little communication and computational
plaintextDe(sk; c). It is required thaDe(sk; En(pk; m,r)) overhead compared to the cryptographic protocols but itesom
= m. A public-key cryptosystem iomomorphidf En(pk; atthe cost of security. Alice and Bob leatf2 linear equations
my,r1)-En(pk; meo,m2) = En(pk; m1 + mo,r1 + 72), Wwhere for the d unknowns that constitute the other party’s vector

+ is a group operation andis a groupoid operation. which leaks a lot of information. Hence, it is important that
Inputs: Private vectorsx and y with Bob and Alice the same matrixi/ should be used when this protocol is used
respectively. multiple times with the same vectar(or y). [3] has analyzed
Outputs: Sharess andb such thata + b = x"y. this protocol which showed serious security flaws and hence
1) Setup phase. Bob: this is not practical when security is crucially important.
« generates a private and public key paik( pk).
« sendspk to Alice. APPENDIX IV
2) Forie{1,...,d}, Bob: PERMUTE PROTOCOL
« generates a random new string This protocol was proposed in [15].
« sendsc; = En(pk; x;,7;) to Alice. Input: Alice and Bob haved-component vectors andy.
3) Alice: Bob has a random permutatian

Output: Alice and Bob obtainq and s such that

d i
o setsz — [[i_, ¢/". a-+s = n(x) + 7ly).

« generates a random plaintéxand a random nonce

7,,1

« sendsz’ = z-En(pk; —b,7’) to Bob. 1) Alice generates public and private keys for a homomor-
phic cryptosystem and sends the public key to Bob. Let
; E() denote encryption with Alice’s public key.

See [9] for a proof that the protocol is correct and secure. 2) Alice encrypts each element afand sends the resulting
vectorx to Bob.

4) Bob computes, = De(sk; ') = xTy — b.

APPENDIXII 3) Bob generates a random vecioand computes a new
SECUREINNER PRODUCT FROMOBLIVIOUS POLYNOMIAL vector § whered;, = z,E(r;) = E(x; + r;), for i =
EVALUATION 1,...,d.

4) Bob permuted and sendsr(#) to Alice. Alice decrypts

[8] proposes an elegant protocol for oblivious evaluation the vector to obtairy,

of multivariate polynomials using oblivious transfer [243 a . .
cryptographic primitive. It can be easily modified to setyre 5) Bob computesy — r and then permutes it using to

evaluate dot products. Let Alice represent eaghas x; = ) obtains = m(y — r)'. _
S ;2971 with a;; € {0,1}. Letv;; = 29~1y;. Notice that Alice and Bob engage in the above permute protocol twice,
7 @ q B . Iy 3.

for eachi, 1 <i <d, 3. a;jvy; = ;5. The idea is to have the second time with their roles interchanged. After this is
Bob prepare;:j and havje Alice get those;; with a;; = 1 in done, Alice and Bob will have two vectors whose sum will be

some secret way. This is achieved as follows: Bob prepa,%;gandom permutation of the_ original sum but neither of them
the pair(r;;, v;; +7:;) for randomly chosenm;; and Alice runs Will know what the permutation is.
independent Oblivious Transfer with Bob to get if a;; =0
andv;; +r;; otherwise. At the end of the protocol, Alice will REEERENCES
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