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Abstract—We present a methodology to sample signals in such
a way so as to avoid the effects of signal clipping due to a limited
dynamic range. We do so by attenuating a selective subset of the
data before it gets sampled, so that if clipping is detected after
the sampling process we can easily estimate the missing samples
using the non-clipped samples that were attenuated. We show
that under sparsity assumptions it is possible to reconstruct the
clipped samples and recover a satisfactory representationof the
original signal. We provide an analysis of the side effects of this
process and show that on average when sampling signals with
highly varying or unknown gain, we can guarantee a significantly
lower potential for signal distortion and noise.

Index Terms—sampling, dynamic range, clipping, missing data,
sparse reconstructions
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I. BACKGROUND

Signal clipping is a well known problem in sampling theory
and one that we encounter frequently with everyday use of
devices such as audio recorders or digital cameras. Clipping is
the effect of attempting to sample a signal whose values exceed
the limits of the numerical representation in use, thereby losing
information and obtaining a distorted sampled representation.

Traditionally, this problem is addressed by careful calibra-
tion of the sampling machinery in relation to the expected
input, so that the likelihood of clipping is minimized. How-
ever this is a tedious and often unreliable process, which is
rarely performed by non-specialists. In order to alleviatethis
problem, various automatic approaches have been devised.
The most straightforward is that of manipulating the gain of
the analog input signal before sampling. There is extensive
work on signal processors that modulate incoming signals in
such a manner so that their values are constrained within a
specific dynamic range. These are known as compressors (or
limiters) and have found extensive use in the audio production
industry [1], [2]. In the speech community, such approaches
are also known as automatic gain control (ACG) methods.
Once past the digitization process, clipping can also be treated
as a missing data problem where the clipped data are inferred
using an appropriate signal model. There has been a significant
amount of work on estimating missing data in this manner
[3], [4], however these approaches are mostly concerned with
obtaining a plausible reconstruction given a learned model.
Because of that, they do not present a sampling methodology
that can be employed for arbitrary signals, but are rather
specialized solutions that require an appropriate signal model.

Recently there have been some interesting approaches in
image capture technology that address this issue in the con-
text of digital photography [5]. These approaches make use

of modulation masks when sampling a signal and use that
knowledge to reconstruct data that spans a larger range of
values. In this paper, we expand on this idea and present an
analysis of a similar approach as applied to audio data. We
note that although the aforementioned approach works well for
imaging, it results in very noticeable aliasing effects when used
on audio data. Here, we introduce extra processing steps that
guarantee more accurate sampling. Ultimately, we show how
to guarantee increased resistance to clipping when sampling
signals of unknown variance, and reconstruct clipped signals
with minimal distortion.

II. M ODULATION FOR CLIPPING AVOIDANCE

A. Sampling and Clipping

When sampling a signal, we perform two operations, one
being the quantization of time and the other being the quantiza-
tion of amplitudes. The problem we will address in this paper
relates to the quantization of amplitudes, i.e., the conversion
of a discrete-time continuous valued inputx[k] to a discrete
and finite representationxq[k]. Most commonly today, we see
the use of two’s complement encoding for representing the
input signal in a discrete manner. In this scheme, we define
the quantization as being a rounding operation into2b discrete
values, whereb is the number of bits we use to represent the
samples. Since this representation will be able to represent
numbers valued from

[

−2b−1, 2b−1 − 1
]

, we will need to
normalizex[k] it so that it falls between these two values.
We therefore define the following process as the quantization
operation:

xq[k] = Q(αx[k]) (1)

where

α =
2b−1 − 1

max |x[k]|
(2)

and Q(·) is a function that rounds its input to the nearest
integer. If the normalizing factorα is known in advance, then
we can proceed by digitizingx[k] and ensuring that its entire
range will be properly represented byxq[k]. If howeverα is
not known or it is overvalued, we run the risk ofclipping the
signal. This happens when the right hand side of (1) exceeds
the range[−2b−1, 2b−1 − 1], andxq[k] is assigned either of
these two extreme values to represent an input that exceeds
them. The result of this mishap when sampling audio signals
is the introduction of a very harsh and unpleasant distortion,
as well as loss of information. Alternatively we can select a
small normalizing factorα such that no clipping occurs. In that
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Figure 1. A basic example of the proposed sampling process. The top
left figure shows the input signal, which surpasses the boundaries of the
available sampling representation. The top right plot shows how this signal
will ordinarily be sampled. The bottom left plot shows the reconstruction after
we impose a gain mask, as described by (3), and the bottom right plot shows
the result of interpolating to infer the samples that were lost due to clipping.

case, though, we run the risk of under-utilizing the dynamic
range that the available bit depth provides, and in the process
introduce extra quantization noise in addition to amplifying
the potential pickup of ambient noise sources.

In the following section, we will outline a different approach
to amplitude quantization that significantly offsets the effects
of signal clipping to ones that are less noticeable and harsh.

B. Proposed Sampling Strategy

Consider the signal in the top left plot of Fig. 1. The signal
is a sinusoid that varies in value from−50000 to 50000. Let
us also assume that we need to sample this signal but are only
provided with 16 bits of accuracy. The 16-bit samples will be
able to express a signal range from−215 to 215 − 1, which
is narrower than the available signal’s range and will result in
clipping as is illustrated in the top right of Fig. 1.

Let us consider then an alternative quantization approach.
Before sampling an arbitrary input signalx[k], we will impose
the following modulation:

z[2k] = x[2k]

z[2k + 1] =
x[2k + 1]

2

(3)

which effectively scales every other incoming sample by a
factor of 2. We then proceed by quantizingz[k] to obtain
zq[k]. The actual implementation of the scaling itself can be
performed by a variety of methods, which are outside the scope
of this paper. The simplest approach would be to multiplex the
samples from two synchronized and offset ADC converters
with different input gains. To reconstructx[k] from zq[k], we

need to undo the scaling by:

x̂[2k] = zq[2k]

x̂[2k + 1] = 2zq[2k + 1].
(4)

This conversion will of course require a representation with
a higher dynamic range, otherwise we will see no benefit
from the subsequent methodology. Upon doing so, we see
that half of the large-magnitude samples,x̂[2k+1], have been
sampled correctly whereas, the other half,x̂[2k], have been
clipped. This is shown in the bottom left plot in Fig. 1. The
clipped samples are easy to identify since they will be the
ones assuming the extreme values of the chosen representation.
Using interpolation, we can reconstruct the clipped samples
of x̂[2k] from the available values of̂x[2k + 1], as shown
in the bottom right of the same figure. In order to guarantee
accurate results when performing the interpolation, we will
have to assume that the input signal is bandlimited and does
not surpass half of the Nyquist rate. If it does so, then we
risk the occurrence of aliasing. An additional concern is the
introduction of some additional quantization noise from the
extra scaling that is now imposed. These are the two main
issues we need to address in this paper in order to guarantee
proper sampling behavior.

C. Generalizations of the Basic Process

Obviously, the scaling imposed onx[2k+1] does not need to
be fixed to a factor of 2, but rather any value that appropriately
expresses the expected uncertainty or fluctuation in the scaling
of the input. In general, if we divide allx[2k + 1] values
by c, then we can reconstruct signals that vary by at mostc
times the dynamic range of the available bit depth. Also, the
rate at which we modulate the gain of the input doesn’t have
to be one out of every two samples, but rather any arbitrary
number. We can therefore generalize this idea so that we use a
sequence of normalizing factors (which we call again mask)
on consecutive chunks of samples. This can be expressed as:

z[k] = C

[

k − n⌊
k

n
⌋

]

x[k] (5)

where⌊·⌋ denotes the floor operation andn is an integer denot-
ing the length of the applied gain maskC[k]. In comparison,
the approach shown above is a special case of this formulation
where C[0] = 1, C[1] = 1/2, and n = 2. As shown later,
using this formulation can achieve better control of the trade-
offs between alleviating clipping and other artifacts thatarise
using this process. Another possible extension can use the fact
that the scaling factor does not have to be constant across time.
We can instead use a sampling strategy akin to automatic gain
control which is characterized by:

z[2k] = x[2k]

z[2k + 1] =
x[2k + 1]

c[k]

(6)

where c[k] can be modulated by estimating the smoothed
amplitude of x[k]. In this case, whenx[k] is within the
dynamic range limits, we can setc[k] to 1, whereas when
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x[k] increases in magnitude we choose an appropriatec[k]
such thatx[k]/c[k] lies within the available dynamic range.
This way, we do not risk corrupting the input signal when no
clipping takes place, and we also ensure appropriate scaling
in order to be able to reconstructx[k]. The obvious trade-off
with this approach, though, is that we need to store the variable
c[k], thereby complicating a hardware implementation of the
sampling process. Likewise, the gain maskC[k] in (5) can
be either fixed or adaptively varying. For the remainder of
this paper, we will mostly focus on the case shown in (3) for
reasons of simplicity. We will however provide a treatment
that is readily extensible to arbitrary gain masks and discuss
some of their benefits.

III. E RROR ANALYSIS

In this section, we will proceed with analyzing some of the
side-effects of the proposed sampling approach. We identify
two problems. The most important is that of aliasing that
might occur during reconstruction. The other is increased
quantization noise due to the scaling imposed on an already
quantized input. We show that we can largely recover from
the effects of aliasing by imposing a sparsity assumption on
the signals, as well as by using the sign information from the
clipped data. We also show that the effect of the quantization
noise can be minimal, at least in comparison to the damage
imposed by the clipping process.

A. Aliasing Artifacts

Aliasing artifacts can arise due to the fact that we discard
some of the samples in the original signal and then perform
reconstruction using interpolation. Let us start by analyzing a
simple case. We start with the model described in the previous
section by (3), where during the clipped regions we would
lose every other sample. During reconstruction we interpolate
to recover the missing samples of the signal. Because of
the regularity of the missing information, there is no way to
know if the available samples represent a frequency above
half the Nyquist or below it. The process of interpolation
would implicitly assume that we seek a bandlimited signal,
which will result in “folding” the frequencies above half the
Nyquist on to the lower half of the spectrum. This of course is
a problem since it alters the spectral character of the inputand
introduces audible distortion. Dictating that the input should
be bandlimited is not an acceptable option and although it
is likely, we cannot hope that the high frequency content
will be insignificant enough to not create an audible effect in
the reconstruction. We therefore need to find a way to avoid
aliasing during the reconstruction process.

We know from signal theory that avoidance of aliasing
would ordinarily be impossible through simple interpolation,
however we do have some additional information that can
help us. Although we do not know the exact value of the
clipped samples, we know their sign. During the clipping
process, samples outside the sampling range are assigned
the maximum or the minimum value of the representation,
depending on their sign. These values provide us with the
sign of the lost samples, which is still useful information.In

addition to this, we also note that the frequency folding from
the aliasing process results in a “busier” spectral profile due to
the extra aliased frequencies appearing on top of the original
ones. This means that the spectrum of that sound would
be much more populated than otherwise. We can therefore
call for the additional constraint that the spectral profileof
the output has to besparse. This constraint would result in
looking for a reconstruction that will minimize the creation
of new frequencies (such as the ones we see when aliasing).
A straightforward way to impose this sparsity constraint is
by ℓ1-norm minimization of the frequency coefficients of the
reconstruction.

All of the above constraints can be expressed jointly as the
following linear program:

minimize qT f

subject to KF−1f = K(x̂ ⊙ w)
∣

∣UF−1f
∣

∣ ≥ |U(x̂ ⊙ w)|
fi ≥ 0

(7)

which is explained as follows. The first line defines the
minimum ℓ1-norm optimization in the frequency domain.
The vectorq is a weight vector, andf is a non-negative
spectral representation of the sound we are reconstructing. The
elements ofq can all be set to 1, although in practice it is
best to have its elements that correspond to high frequency
coefficients off to have slightly higher values, so that we
obtain more sparsity in the higher frequency ranges. This
effectively imposes a slight preference towards a1/f spectral
structure which we are likely to encounter in natural sounds.

The second line of the program is an equality constraint,
which ensures that the unclipped samples should maintain
their values. The matrixK is a diagonal matrix whoseith
row diagonal element will be 1 if theith element of the input
sound is not clipped, and 0 otherwise. The matrixF−1 is an
inverse spectral transform matrix that transforms the spectral
coefficients of the non-negative vectorf to the time domain. In
this paper we usedF−1 =

[

CT , −CT
]

where theC matrix
is the DCT matrix. We repeated the DCT matrix using its
positive and negative forms so that we can ensure that all
the elements off can be non-negative and still replicate any
possible input. The vector̂x is a short window of audio that
we wish to reconstruct. It contains both re-normalized and
clipped samples [e.g. the output from (4)]. In the experiments
of this paper,̂x was between 64 and 256 samples long. For
long sounds, we used a sliding window method so that we
reconstructed clipped samples one window at a time. The
vectorw is a window function that will help suppress spurious
spectral elements inf , so that theℓ1-norm minimization
focuses on actual peaks and not sidelobes that appear due to
poor frequency analysis. The operator⊙ signifies an element-
wise (Hadamard) product, which imposes the windowing on
the input signal. A Hann window wass used for most results
in this paper.

The third line in this program imposes the constraint that the
clipped samples should have values that exceed in magnitude
the numerical limits of the sampling representation. Here,U

is a diagonal matrix whoseith row diagonal element is 1 if the
ith sample is clipped, and is 0 otherwise (such thatK+U = I).
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Figure 2. Reconstruction of a clipped chirp signal. The top left spectrogram
shows the original input chirp signal. The top right plot shows the spectrogram
of the chirp signal with the clipped samples removed. Note how this operation
results in severe aliasing. The bottom left plot shows the result of replacing
the clipped samples with values derived from bandlimited interpolation and
the bottom right plot shows the reconstruction using our proposed method. It
is easy to see that our reconstruction does a good job at bypassing aliasing
and bandwidth limiting problems that we would otherwise observe.

Finally, the fourth line of the linear program dictates that
the spectral representation that we use is non-negative, which
is required in order to ensure theℓ1-norm minimization.

These equations constitute a straightforward linear program-
ming problem whose solution has been covered extensively in
the linear programming literature [6]–[8]. In this particular
application, the data do not present any particular numerical
challenge and we can estimatef efficiently using any off-the-
shelf solver. To summarize the above program in more intuitive
terms, what we try to do is to find a sparse spectral feature
vector that in the time domain will result in an output that
is equal to the known samples, and magnitude bounded from
below by the clipped samples.

To demonstrate the use of this optimization, let us consider
a simple illustrative problem. The signal we will use is a 8192-
sample chirp signal, sweeping from zero frequency to Nyquist.
The spectrogram of this signal is shown in the upper left plotof
Fig. 2. The extreme values of this waveform are−2 and2 and
the clipping points were set to−1 and1. Using the sampling
process from (3) results in a little more than a third of the
chirp samples getting clipped. Once we remove the clipped
samples, we observe strong aliasing effects, which are shown
in the upper right plot of the same figure. If we don’t use the
available sign information and naively perform bandlimited,
interpolation, in order to reconstruct the clipped samples, we
will force the latter half of the chirp to be reflected across
the half-Nyquist frequency (bottom left plot). If we use the
proposed reconstruction process, the aliased solution is not
plausible and an accurate reconstruction is obtained despite
the heavy loss of information (bottom right plot).

The chirp experiment is of course contrived and can only
serve as an introductory illustrative example. So let us present
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Figure 3. Reconstruction of a speech signal. The top left plot shows
the spectrogram of the original speech signal. The top rightplot shows its
spectrogram after an AR model reconstruction where it is easy to see the
aliasing effect during the loudest regions. The bottom leftplot shows the
results of a bandlimited interpolation where the upper frequencies are being
suppressed. The bottom right plot shows the proposed approach where we
can resynthesize without significant aliasing or loss of high frequencies.

a more realistic experiment on real audio data. Consider the
speech signal shown in the top left plot of Fig. 3, a recording
of a female speaker saying “a small boy”. The peak of this
signal is twice as large as the clipping threshold, which
resulted in clipping with strong audible artifacts. The clipped
samples are concentrated around the “a” in “small” and the
“o” in “boy”, which were the only regions that contained
any clipped samples. Within these regions, the percentage of
clipped samples was between 1% and 12% per window of 128
samples (which was the size of the sliding window used for
reconstruction). Upon detecting the clipped samples, we used a
few different ways to infer the missing information. In the top
right plot we show the reconstruction using an autoregressive
model trained on speech, in the bottom left we use bandlimited
interpolation, and in the bottom right plot we use our method.
For the AR model, we can see a significant amount of aliasing
during the reconstruction of the clipped areas. We achieved
qualitatively similar results when using simple polynomial
interpolation instead. In the bandlimited interpolation case, it
comes as no surprise that the upper half of the frequencies
is suppressed around the areas where we have a high density
of missing samples. The proposed reconstruction is a very
satisfactory result, which exhibits no detectable aliasing or
significant distortion of the input (either visually or in listening
tests).

B. Quantization Noise

Now let us focus on the case where no clipping takes place.
These are cases where the proposed method is redundant and
straightforward sampling would properly represent any input
signal. The only artifact that our method will produce is that
of excess quantization noise due to the extra normalizationof
some of the samples.
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We start with the example where we scale every second
sample by a constant factorc, i.e:

z[2k] = x[2k]

z[2k + 1] = cx[2k + 1].
(8)

We also assume that the sampling taking place is done
with b bits of precision. If we assume that the quantization
noise andx[k] are uniformly distributed across all possible
amplitude values, then ordinary sampling atb bits will re-
sult in −10 log10(2

−2b) dB of signal-to-noise ratio (SNR)
due to quantization. In our sampling scheme, half of the
samples will have an SNR of−10 log10(2

−2b) dB and the
other half an SNR of−10 log10(c

−22−2b) dB, which is
averaged to yield the overall SNR. In this case, this will equal
−10 log10

(

1
2
(2−2b + c−22−2b)

)

. In the case of an arbitrary
length gain maskC[t], this extends to:

SNR(b, c) = −10 log10

(

1

n

n
∑

i=1

c[i]−22−2b

)

. (9)

If we have a time-varying gainC[k] then the predicted SNR
will be dynamically changing in time according to the above
equation.

Simulations of the quantization noise effect when sampling
white noise are shown in Fig. 4. In both cases we assume
that we sample with 16 bits of precision. The left plot shows
the case where the gain mask isC[k] = [1, 1/2]. This means
that the even samples will be effectively sampled at 15 bits.
We show the measured spectrum of the quantization noise and
compare it with the spectra of the 16-bit and 15-bit sampling
noise. The noise under this sampling scheme is the average of
that between the two implied bit precisions. One more example
takes place in the right panel of Fig. 4. In this case we show the
noise levels when we use the gain maskC[k] = [1, 1/2, 1/3].
This time, the implied quantization for each triplet of samples
is 16, 15, and 14.4 bits, respectively. Once again we see that
the overall quantization noise is the average of the used bit
accuracies.

IV. COMPARISON TO CLIPPING

The ultimate goal of this paper is to recover an otherwise
clipped signal with minimal distortion artifacts. To see how
this approach compares to an ordinarily sampled signal we
consider some examples and attempt to quantify the results.

Let us consider the case in (3) again. This time the input is
1536 samples long and contains10π periods of a sinusoid
(the number of periods was selected to be an irrational
number, in order to minimize periodicity effects in the noise
measurements). Sampling takes place at 16 bits of precision.
Suppose that the sinusoid’s extrema are twice as large in
magnitude than what the available bit precision allows. This
means that if we perform straightforward sampling, roughly
66% of the samples will clip. Using variable gain sampling, we
only observe clipping in half of these samples, due to scaling
half of them before quantization.

Let us investigate what happens to the spectral character-
istics of the aforementioned sinusoid when performing these
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Figure 4. Quantization noise spectra when performing gain modulation. In
the case shown in the left panel, we scale all odd samples by a factor of
2, which results in one less bit of precision for these samples. Sampling is
done at 16 bits. The top trace shows the measured quantization noise of the
odd samples, which is also the level expected for 15-bit sampling. The bottom
trace displays the noise for the even samples, which is also the expected noise
for 16-bit sampling. The overall noise level for the gain modulated signal is
the middle trace. This is the linear average of the other two traces (note the
log scaling in this figure). Likewise, on the right, we show the equivalent
results for a gain maskC[k] = [1, 1/2, 1/3]. The top line is the noise for the
third out of each triplet of samples, which gets effectivelysampled at 14.4
bits. The bottom and third traces show the respective noise for the other two
samples (sampled at 16 and 15 bits).

operations. To compute the power spectra we used a Hamming
window and a frame size of 512 samples. In the case of
straightforward sampling, we observe severe distortion, result-
ing in an SNR of7.6 dB, and a significant presence of new
harmonics in the signal. The spectrum of the extra noise added
into the signal due to clipping, as compared to the input’s
spectrum, is shown in the top plot of Fig. 5. In comparison,
the spectrum of the introduced noise due to our reconstruction
results in an SNR of about99 dB which is inaudible and
roughly equal to the noise floor due to quantization. The
spectrum of the introduced noise as compared to the that of
the input is shown in the bottom plot of Fig. 5.

Now let us consider a real-world signal and illustrate the
advantages of this method in a more realistic scenario. In Fig.
6 we display the results for a speech recording sampled at
48 kHz, where we contrast its power spectrum with that of
the introduced noise due to clipping and the use of various
gain masks. The top plot shows the input waveform in gray,
and the limits of the numerical representation we used by the
dashed lines. The input’s peak value surpasses the sampling
representation by a factor of 10, which results in clipping
28% of the samples. The subsequent series of plots show the
spectra of the introduced noise using various gain masks, as
compared to the spectrum of the input. One can easily see
that the noise that is introduced when we don’t use a gain
mask is as strong as the input signal (SNR of about0.2 dB),
whereas increasingly more aggressive masking improves the
SNR up to44 dB. The audible effects of this noise are virtually
imperceptible for most of the best performing gain masks. By
comparison, if we knewa priori the extreme values of the
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Figure 5. A comparison of the resulting noise spectra when sampling a
sinusoid that exceeds the available dynamic range in a traditional manner
versus the proposed approach. The dark trace of the top plot shows the power
spectrum of the quantization noise due to clipping. In comparison, the grey
trace shows the actual spectrum of the sinusoid after quantization but without
any clipping. The bottom plot shows the same measures using our proposed
method. The resulting noise pattern is significantly reduced and practically
inaudible.

input signal and used the appropriate scaling to avoid clipping
the quantization noise would rise up to about−76 dB. We
therefore attain a noise performance within32 dB of the limit
of quantization noise with proper scaling, but by doing so
we can capture signals with an unexpected 10-fold (20 dB)
increase in dynamic range. It should also be noted that the
kind of noise that we measure with this process is concentrated
in the high-energy portions, whereas the low-energy portions
exhibit less noise as compared with optimally scaled sampling.
This creates a noise pattern that is less perceptible than the
usual quantization noise. An illustration of this is shown in
Fig. 7.

We repeated the above experiment for multiple speech
and music waveforms and, in addition to the SNR, we also
measured the Perceptual Evaluation of Audio Quality (PEAQ)
scores [9] of the sampled representations in order to obtain
an indication of the perceived degradation. Using ordinary
sampling, 27% of the samples were clipped for the speech
signals, and 41% for the music signals. The averaged results
for that data are shown in Fig. 8. We clearly see that our
approach increases the SNR dramatically with more aggressive
gain masks. The PEAQ scores also indicate that the sampling
noise ranges from “highly annoying” in the case where we
have clipping, to “imperceptible” in the case where nearly
correct gain scaling has been applied. This has also been
verified in informal listening tests. For reference a 160-kbit/s
MP3 encoding of these sounds results in a PEAQ index of
about−0.5.

Another interesting point is the difference between speech
and music results. Speech, having higher kurtosis than music,
has a smaller ratio of samples near the extreme amplitude
values. This implies that clipping and its subsequent recon-
struction occurs less often than it does in music, which has a
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Figure 6. Sampling error spectra for a speech signal using various gain masks,
as compared to clipping and normal sampling. The topmost plot displays the
input waveform (in gray) and the limits of the sampling representation we
used by dashed lines. At its peak the waveform exceeds these limits by a
factor of 10. The second plot from above displays the power spectrum of the
noise introduced due to clipping. For reference, the spectrum of the actual
input is also shown by the gray line. Subsequent plots display the spectra of
the sampling noise for a variety of gain masks. The text in theplots shows the
gain mask that was used, the resulting SNR in dB, and the average percentage
of clipped samples per analysis window using only windows where at least
one sample was clipped and reconstruction was necessary.
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Figure 7. SNR measurements of a speech signal over time. The top plot
shows the input waveform with the clipping thresholds shownby the dashed
lines. The bottom plot compares the SNR measurements between the optimal
scaling, which would guarantee no clipping (grey trace), and the proposed
method (black trace). Note how our method samples the low energy parts
with less quantization noise and introduces noise only in the loudest sections.
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Figure 8. Averaged measurements of PEAQ (top) and SNR (bottom) in
multiple speech and music examples. The labels on the x axis denote the gain
mask that was used. The leftmost case, where the mask wasC[k] = 1, is
equivalent to normal sampling without any gain modulation.The input signals
were scaled so that their maximum value would be 10 times the maximum
sample in the used representation. Therefore the rightmostbars denote the
case where, at worst, only one sample out of every two is clipped. The cases
on the left are the worst-case scenarios.

more uniform distribution of amplitude values. This results in
smaller SNR gains for the music signal. On the other hand, the
PEAQ scores on music sounds are more favorable since the
resulting distortion is not as prominent within a busy ensemble
of many wideband sounds.

V. D ISCUSSION

So far we only considered simple gain masks in order to
make the presentation more accessible. Let us now discuss
some of the more interesting directions that we can take using
this approach.

As we pointed out earlier, the size and composition of the
gain masks can be of arbitrary length. Selecting an appropriate
mask in such cases can be an involved procedure. Ideally we
would like to ensure that the clipped samples within a mask
will be as few as possible. This implies that the most cautious
selection for a mask would be one where most of the gains
are small, with only a few taking large values. This will result
in having to reconstruct a minimal number of samples and a
small risk potential of reconstruction error. On the other hand,
this will result in increasing the average quantization noise of
the samples, since most inputs will be scaled down. A more
aggressive selection would be the opposite approach of using
many large gains and very few small gains. This will result in
having to reconstruct more missing data, but with little impact
in the effective number of bits used to represent the samples.

A choice in the spectrum between these options can be
based on knowledge of the kind of input sound. A highly
kurtotic signal, like speech, can benefit from an aggressive
choice of a gain mask, whereas a more uniform signal, like
a popular music recording, would not. Since the qualitative
tradeoffs between clipping and our reconstruction are not easy
to analyse or quantify, making an automatic decision on the
optimal gain mask based on signal statistics is not easy, and
at this point we can only rely in a mask selection based on
heuristics.

In either of these cases, it is prudent to carefully arrange the
gain mask elements in order to help the reconstruction process.
For example, it is best to use a mask that can result in smaller
sections of contiguous clipped data, such as[1, 1/2, 1, 1/3],
as opposed to[1, 1, 1/2, 1/3]. This makes the reconstruction
process simpler and also constructs an aliasing pattern that
is easier to resolve (the second mask can result in “double”
aliasing as opposed to the regular aliasing we would get with
the first one).

When thinking in terms of aliasing effects, another factor
that becomes relevant is the sampling rate we choose. One
can consider the extreme case where we use a two-sample
gain mask and oversample the (bandlimited) input by twice the
required sampling rate. This means that even if we lose one
in two samples to clipping, we can still reconstruct the signal
without loss of information. This is because we avoid aliasing,
which mixes the real and folded frequencies by increasing the
sampling rate. The generalization of this statement is thatas
long as we oversample a bandlimited input by the length of
the gain mask, then there will be no serious aliasing issue.
Of course this is not particularly practical and is essentially
equivalent to sampling the same signal while multiplexing
inputs with multiple gains. However, even oversampling by a
fractional amount will result in minimizing the aliasing overlap
and can lend to better reconstruction. In cursory simulations,
oversampling by as little as 10% resulted in an SNR increase
of 5 dB, whereas oversampling by 20% resulted in a9-dB
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increase.
An alternative approach, which can average out the mask de-

sign options, is the use of a completely random gain mask. Pre-
liminary simulations show that this can result in an improved
SNR and average out the tradeoffs in the aforementioned
options. However this type of modulation can significantly
complicate a working hardware implementation and is beyond
the scope of this paper.

Finally, it is possible to use automatic gain control to adjust
some of the elements of the gain mask so as to ensure nearly
optimally masking at all times. The advantage of this approach
will be that although we perform a sort of gain control, we
will not be distorting the amplitude of the reconstruction,but
instead use this scaling to infer the clipped samples.

VI. CONCLUSIONS

In this paper, we have shown a sampling methodology that
can result in a high tolerance to clipping when sampling
signals with extreme gain fluctuations. The sampling approach
can be easily implemented in hardware since it only involves
the design of a gain mask stage. The remainder of the sampling
apparatus remains the same as regular sampling systems.
Implementation of the waveform restoration in hardware is a
much more complex endeavor, however it is not required and
in fact to be avoided. Aside from complications in implement-
ing a linear program solver in hardware, restoring a clipped
waveform would necessitate a change in numerical format to
one that is able to accurately represent the reconstruction. This
only postpones the problem of guessing the input’s extrema
from the gain stage to the storage stage. Even if we guess
right, we would have to use considerably more storage space
to cover the expanded dynamic range, which is not a practical
decision. Instead we can keep the gain-modulated and clipped
waveform in the bit width that the sampling hardware already
uses and then perform the reconstruction in software using
floating point when we need access to the actual waveform.
This would be akin to sampling the signal in a compressed
format and then having to decode it when waveform access is
needed. This way we can keep the hardware implementation
very simple and provide an efficient storage format for much
larger dynamic ranges than otherwise.

We should also note that the main benefit of this approach is
not higher fidelity sampling, but rather the design of a process
that can tolerate gross miscalculations in gain settings, or deal
with wide energy fluctuations in a signal, and still produce an
acceptable sampling performance. These are situations that are
commonplace with consumer products such as handheld audio
and video devices, which often produce clipping in recordings,
but also in studio situations when using close miking tech-
niques on dynamic sources, such as drums and voice, in order
to reduce the presence of reverberation and ambient noise.
Alternative sampling options in these cases are either the use
of automatic gain control or re-recording with adjusted gains.
The former approach will result in severe misrepresentation
of the signal, which depending on the intended application
of the recording, might be undesirable. The latter approach
requires extra work and time in addition to requiring a reliably

repeatable source, and offers no guarantee of success when
repeating the recording process. Given these two constraints,
the alternative we present is a valuable approach to recording
reliably under uncertain gain conditions.
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