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Abstract—We present a methodology to sample signals in such of modulation masks when sampling a signal and use that
away so as to avoid the effects of signal clipping due to a litéid  knowledge to reconstruct data that spans a larger range of
dynamic range. We do so by attenuating a selective subset dfe 5,65 | this paper, we expand on this idea and present an
data before it gets sampled, so that if clipping is detectedfer . L . .
the sampling process we can easily estimate the missing saep analysis of a similar approach E_is applied to audio data. We
using the non-clipped samples that were attenuated. We show note that although the aforementioned approach works well f
that under sparsity assumptions it is possible to reconstret the imaging, it results in very noticeable aliasing effects wiieed
clipped samples and recover a satisfactory representatioof the  on audio data. Here, we introduce extra processing steps tha
original signal. We provide an analysis of the sidt_e effe_ctsfdhis_ guarantee more accurate sampling. Ultimately, we show how
process and show that on average when sampling signals W|tht tee | d it to clippi ' h i
highly varying or unknown gain, we can guarantee a significatly 9 guarantee increase . resistance to clipping W en sag1p n
lower potential for signal distortion and noise. signals of unknown variance, and reconstruct clipped $sgna

Index Terms—sampling, dynamic range, clipping, missing data, with minimal distortion.

sparse reconstructions
EDICS: AUD-SSEN II. M ODULATION FOR CLIPPING AVOIDANCE

|. BACKGROUND A. Sampling and Clipping

Signal clipping is a well known problem in sampling theory When sampling a signal, we perform two operations, one
and one that we encounter frequently with everyday use Igéing the quantization of time and the other being the gmanti
devices such as audio recorders or digital cameras. Cgpin tion of amplitudes. The problem we will address in this paper
the effect of attempting to sample a signal whose valuesagkceelates to the quantization of amplitudes, i.e., the cciver
the limits of the numerical representation in use, theresing of a discrete-time continuous valued inptfk] to a discrete
information and obtaining a distorted sampled represimtat and finite representatian,[k]. Most commonly today, we see

Traditionally, this problem is addressed by careful calibr the use of two’s complement encoding for representing the
tion of the sampling machinery in relation to the expecte@lput signal in a discrete manner. In this scheme, we define
input, so that the likelihood of clipping is minimized. How-the quantization as being a rounding operation iftdiscrete
ever this is a tedious and often unreliable process, whichyiglues, wheré is the number of bits we use to represent the
rarely performed by non-specialists. In order to allevidiis samples. Since this representation will be able to reptesen
problem, various automatic approaches have been devisegmbers valued from[_2b—1’2b—1 — 1], we will need to
The most straightforward is that of manipulating the gain gformalizez[k] it so that it falls between these two values.
the analog input signal before sampling. There is extensivg therefore define the following process as the quantizatio
work on signal processors that modulate incoming signals dperation:
such a manner so that their values are constrained within a zq[k] = Q(ax[k]) (1)
specific dynamic range. These are known as compressors (or
limiters) and have found extensive use in the audio prodocti Where gb-1_ 1
industry [1], [2]. In the speech community, such approaches a=—— (2)
are also known as automatic gain control (ACG) methods. max |z (k]|
Once past the digitization process, clipping can also e and Q(-) is a function that rounds its input to the nearest
as a missing data problem where the clipped data are inferiateger. If the normalizing factor is known in advance, then
using an appropriate signal model. There has been a signtificae can proceed by digitizing[k] and ensuring that its entire
amount of work on estimating missing data in this manneange will be properly represented by[k]. If howeverqa is
[3], [4], however these approaches are mostly concerndd witot known or it is overvalued, we run the risk dfpping the
obtaining a plausible reconstruction given a learned modsignal. This happens when the right hand side of (1) exceeds
Because of that, they do not present a sampling methodoldbg range[—2°~!, 2*=1 — 1], andz,[k] is assigned either of
that can be employed for arbitrary signals, but are rathérese two extreme values to represent an input that exceeds
specialized solutions that require an appropriate sigmadeh them. The result of this mishap when sampling audio signals

Recently there have been some interesting approachessithe introduction of a very harsh and unpleasant distortio
image capture technology that address this issue in the cas-well as loss of information. Alternatively we can select a
text of digital photography [5]. These approaches make usmall normalizing factoe such that no clipping occurs. In that
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JRe % S D ROV This conversion will of course require a representatiorhwit
oy a higher dynamic range, otherwise we will see no benefit
o 10 ps 2 2 0 0 20 " w from the subsequent methodology. Upon doing so, we see
that half of the large-magnitude samplé&k + 1], have been
Proposed sampiing after rescaling Proposed sampling after reconsirution sampled correctly whereas, the other half2k], have been
00 | O Goodsamples e © Good samples clipped. This is shown in the bottom left plot in Fig. 1. The
2154 Oo%oumou%o 2% & N clipped samples are easy to identify since they will be the
. s Ooo . s Ooo ones assuming the extreme values of the chosen represantati
o K o K Using interpolation, we can reconstruct the clipped sample
IRt Qpoooad o o, ¢, of #2k] from the available values of[2k + 1], as shown
C00° s in the bottom right of the same figure. In order to guarantee
0 10 20 a0 40 0 10 20 30 w0 accurate results when performing the interpolation, wd wil

have to assume that the input signal is bandlimited and does
Figure 1. A basic example of the proposed sampling procebe. 0 pot surpass half of the Nyquist rate. If it does so, then we
left figure shows the input signal, which surpasses the bamesl of the . K th f aliasi A dditi | s th
available sampling representation. The top right plot shéww this signal _”S € (_)CCU”ence ora I<’_:1_Slng. na A ! |(_)na cqncern -
will ordinarily be sampled. The bottom left plot shows theamstruction after introduction of some additional quantization noise frore th
we impose a gain mask, as described by (3), and the bottornpighshows  extra scaling that is now imposed. These are the two main
the result of interpolating to infer the samples that wes# thue to clipping. . . . .

issues we need to address in this paper in order to guarantee

proper sampling behavior.

case, though, we run the risk of under-utilizing the dynamig Generalizations of the Basic Process
range that the available bit depth provides, and in the @oce
introduce extra quantization noise in addition to ampfifyi
the potential pickup of ambient noise sources.

In the following section, we will outline a different appida
to amplitude quantization that significantly offsets théeets
of signal clipping to ones that are less noticeable and hars

Obviously, the scaling imposed affi2k+1] does not need to
be fixed to a factor of 2, but rather any value that approgdyiate
expresses the expected uncertainty or fluctuation in tHangca
of the input. In general, if we divide alt[2k + 1] values
y ¢, then we can reconstruct signals that vary by at naost
mes the dynamic range of the available bit depth. Also, the
rate at which we modulate the gain of the input doesn’t have
to be one out of every two samples, but rather any arbitrary
B. Proposed Sampling Strategy number. We can therefore generalize this idea so that we use a
sequence of normalizing factors (which we calfjain mask)
Consider the signal in the top left plot of Fig. 1. The signain consecutive chunks of samples. This can be expressed as:
is a sinusoid that varies in value from50000 to 50000. Let L
us also assume that we need to sample this signal but are only z[k] =C {k - nL—J] z[k] (5)
provided with 16 bits of accuracy. The 16-bit samples will be "
able to express a signal range fron2'® to 2> — 1, which where|[-| denotes the floor operation ands an integer denot-
is narrower than the available signal’s range and will resul ing the length of the applied gain magKk]. In comparison,
clipping as is illustrated in the top right of Fig. 1. the approach shown above is a special case of this formnlatio

Let us consider then an alternative quantization approadfere C[0] = 1, C[1] = 1/2, andn = 2. As shown later,
Before sampling an arbitrary input signelk], we will impose USing this formulation can achieve better control of theléra

the following modulation: offs between alleviating clipping and other artifacts thete
using this process. Another possible extension can usethe f
z[2k] = x[2K] that the scaling factor does not have to be constant across ti
(3) We can instead use a sampling strategy akin to automatic gain
22k +1] = z[2k +1] control which is characterized by:
2
which effectively scales every other incoming sample by a 2[2k] = =[2K]
factor of 2. We then proceed by quantizingk] to obtain 2[2k + 1] (6)

zq[k]. The actual implementation of the scaling itself can be z[2k+1] =
performed by a variety of methods, which are outside theecop c[k]

of this paper. The simplest approach would be to multiplex thvhere ¢[k] can be modulated by estimating the smoothed
samples from two synchronized and offset ADC converteasnplitude of z[k]. In this case, whenz[k] is within the
with different input gains. To reconstrugfk] from z4[k], we dynamic range limits, we can sefk] to 1, whereas when



z[k] increases in magnitude we choose an approprigie addition to this, we also note that the frequency foldingrfro
such thatz[k]/c[k] lies within the available dynamic range.the aliasing process results in a “busier” spectral profile t
This way, we do not risk corrupting the input signal when nthe extra aliased frequencies appearing on top of the aligin
clipping takes place, and we also ensure appropriate gcalones. This means that the spectrum of that sound would
in order to be able to reconstruefk|. The obvious trade-off be much more populated than otherwise. We can therefore
with this approach, though, is that we need to store the blgriacall for the additional constraint that the spectral profife
c[k], thereby complicating a hardware implementation of ththe output has to beparse. This constraint would result in
sampling process. Likewise, the gain maSkk] in (5) can looking for a reconstruction that will minimize the creatio
be either fixed or adaptively varying. For the remainder aff new frequencies (such as the ones we see when aliasing).
this paper, we will mostly focus on the case shown in (3) fok straightforward way to impose this sparsity constraint is
reasons of simplicity. We will however provide a treatmertty /;-norm minimization of the frequency coefficients of the
that is readily extensible to arbitrary gain masks and discureconstruction.
some of their benefits. All of the above constraints can be expressed jointly as the
following linear program:
[1l. ERRORANALYSIS

minimize qTf
In this section, we will proceed with analyzing some of the subjectto KF~'f = KEow) 7
side-effects of the proposed sampling approach. We identif |[UF~'f| > [URow) )
two problems. The most important is that of aliasing that i > 0

might occur during reconstruction. The other is increasedh. . . ) . '
o . S w ich is explained as follows. The first line defines the
guantization noise due to the scaling imposed on an alrea

. . Minimum ¢,-norm optimization in the frequency domain.
guantized input. We show that we can largely recover fro%e vectorlq is a WF()eight vector. and is g nonynegative

the e.ffects of aliasing by 'mposing a-spe.lrsny as§umpt|on Wectral representation of the sound we are reconstrudtirey
the signals, as well as by using the sign information from th ) 2
ements ofq can all be set to 1, although in practice it is

) )
ﬁg?g:i;ﬁtg'evr\fm?rfgl Sg?ﬁ;g?ti;hsoifegigr:h; ?ﬁsnc::rit;%%st to have its elements that correspond to high frequency
' P Sefficients off to have slightly higher values, so that we

imposed by the clipping process. obtain more sparsity in the higher frequency ranges. This
effectively imposes a slight preference towards/d spectral
A. Aliasing Artifacts structure which we are likely to encounter in natural sounds
Aliasing artifacts can arise due to the fact that we discard The second line of the program is an equality constraint,
some of the samples in the original signal and then perfomrhich ensures that the unclipped samples should maintain
reconstruction using interpolation. Let us start by analya their values. The matriX is a diagonal matrix whoséh
simple case. We start with the model described in the previoww diagonal element will be 1 if thigh element of the input
section by (3), where during the clipped regions we woulsbund is not clipped, and O otherwise. The mafix! is an
lose every other sample. During reconstruction we intexjgol inverse spectral transform matrix that transforms the tspkec
to recover the missing samples of the signal. Because awfefficients of the non-negative vectbto the time domain. In
the regularity of the missing information, there is no way tthis paper we use#f~! = [CT, —C”] where theC matrix
know if the available samples represent a frequency abdsethe DCT matrix. We repeated the DCT matrix using its
half the Nyquist or below it. The process of interpolatiopositive and negative forms so that we can ensure that all
would implicitly assume that we seek a bandlimited signahe elements of can be non-negative and still replicate any
which will result in “folding” the frequencies above halfegh possible input. The vectak is a short window of audio that
Nyquist on to the lower half of the spectrum. This of course igze wish to reconstruct. It contains both re-normalized and
a problem since it alters the spectral character of the iapdt clipped samples [e.g. the output from (4)]. In the experitaen
introduces audible distortion. Dictating that the inpubsid of this paperx was between 64 and 256 samples long. For
be bandlimited is not an acceptable option and althoughldng sounds, we used a sliding window method so that we
is likely, we cannot hope that the high frequency conten¢constructed clipped samples one window at a time. The
will be insignificant enough to not create an audible effect ivectorw is a window function that will help suppress spurious
the reconstruction. We therefore need to find a way to avaigectral elements irf, so that the/;-norm minimization
aliasing during the reconstruction process. focuses on actual peaks and not sidelobes that appear due to
We know from signal theory that avoidance of aliasingoor frequency analysis. The operatorsignifies an element-
would ordinarily be impossible through simple interpatati wise (Hadamard) product, which imposes the windowing on
however we do have some additional information that cdhe input signal. A Hann window wass used for most results
help us. Although we do not know the exact value of thia this paper.
clipped samples, we know their sign. During the clipping The third line in this program imposes the constraint that th
process, samples outside the sampling range are assigdgped samples should have values that exceed in magnitude
the maximum or the minimum value of the representatiothe numerical limits of the sampling representation. H&Je,
depending on their sign. These values provide us with tieea diagonal matrix whosgh row diagonal element is 1 if the
sign of the lost samples, which is still useful informatidn. :th sample is clipped, and is 0 otherwise (such WatU = I).
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Figure 2. Reconstruction of a clipped chirp signal. The &fpspectrogram Figure 3. Reconstruction of a speech signal. The top left ploows
shows the original input chirp signal. The top right plotwisdghe spectrogram the spectrogram of the original speech signal. The top nigbt shows its
of the chirp signal with the clipped samples removed. Note tiis operation SPectrogram after an AR model reconstruction where it iy éassee the
results in severe aliasing. The bottom left plot shows tiseilteof replacing aliasing effect during the loudest regions. The bottom [#ét shows the

the clipped samples with values derived from bandlimite@rigolation and results of a bandlimited int'erpolation where the upper degies are being
the bottom right plot shows the reconstruction using ouppsed method. It Suppressed. The bottom right plot shows the proposed agiprahere we
is easy to see that our reconstruction does a good job at sipgasliasing Can resynthesize without significant aliasing or loss ohtigquencies.

and bandwidth limiting problems that we would otherwise eslis.

a more realistic experiment on real audio data. Consider the

Finally, the fourth line of the linear program dictates thaiPeech signal shown in the top left plot of Fig. 3, a recording
the spectral representation that we use is non-negativiehwhOf @ female speaker saying “a small boy”. The peak of this
is required in order to ensure ttig-norm minimization. signal is twice as large as the clipping threshold, which

These equations constitute a straightforward linear progr "€Sulted in clipping with strong audible artifacts. Thepped
ming problem whose solution has been covered extensivelySRmPIes are concentrated around the “a” in “small” and the
the linear programming literature [6]-[8]. In this pariau © 1N “boy”, which were the only regions that contained
application, the data do not present any particular nuraeri@" clipped samples. Within these regions, the percentége o
challenge and we can estimatefficiently using any off-the- CliPPed samples was between 1% and 12% per window of 128
shelf solver. To summarize the above program in more ineit S2MPles (which was the size of the sliding window used for
terms, what we try to do is to find a sparse spectral featfgeonstruction). Upon detecting the clipped samples, e as
vector that in the time domain will result in an output thateW different ways to infer the missing information. In thopt

is equal to the known samples, and magnitude bounded fr&ight plot we show the reconstruction using an autoregvessi
below by the clipped samples. model trained on speech, in the bottom left we use bandidnite

To demonstrate the use of this optimization, let us considgerpOlat'on’ and in the bottom right plot we use our method

a simple illustrative problem. The signal we will use is a 819 or_the AR model, we can see a 5|gn|f|cant amount of ahgsmg
sample chirp signal, sweeping from zero frequency to Nytqui uring '_[he rec_on_strucnon of the cllpped areas. we achlgved
The spectrogram of this signal is shown in the upper leftglot qualitatively similar results when using simple polynomia

Fig. 2. The extreme values of this waveform are and2 and interpolation instead. In the bandlimited interpolaticaase, it
the clipping points were set to1 and1. Using the sampling comes as no surprise that the upper half of the frequencies

process from (3) results in a little more than a third of thiés suppressed around the areas where we have a high density

chirp samples getting clipped. Once we remove the clipp&fj missing samples. The proposed reconstruction is a very

samples, we observe strong aliasing effects, which are mho%\?tis_f_actory _resullt, which ,eXhibitSf no d_etectable_ aI.igg'n
in the upper right plot of the same figure. If we don't use th@gnlflcant distortion of the input (either visually or irsening

available sign information and naively perform bandlirdite tests).

interpolation, in order to reconstruct the clipped samples

will force the latter half of the chirp to be reflected acrosB. Quantization Noise

the half-Nyquist frequency (bottom left plot). If we use the Now let us focus on the case where no clipping takes place.

proposed reconstruction process, the aliased solutiorois These are cases where the proposed method is redundant and

plausible and an accurate reconstruction is obtained @espiraightforward sampling would properly represent anyutnp

the heavy loss of information (bottom right plot). signal. The only artifact that our method will produce isttha
The chirp experiment is of course contrived and can onbf excess quantization noise due to the extra normalization

serve as an introductory illustrative example. So let usgme some of the samples.



We start with the example where we scale every seco
sample by a constant factor i.e:

z[2k] = z[2k]

Noise at coarsest used quantization, -90.3 dB

Noise at coarsest used quantization, -86.7 dB

(8) i
Z[2]€ + 1] = C:’E[2k + 1] e Noise with gain modulation, ~89.6 dB

R

Noise at median used quantization, -90.3 dB

We also assume that the sampling taking place is dog
with b bits of precision. If we assume that the quantizatio
noise andz[k| are uniformly distributed across all possible
amplitude values, then ordinary sampling tabits will re-

I” Noise with gain modulation, -92.3 dB*

Noise level (dB)

Noise level (

sult in —101log;(272%) dB of signal-to-noise ratio (SNR) | o

due tO quantlzat'on. In Our Sampllng SCheme, half Of tr Noise at finest used quantization, -96.3 dB Noise at finest used quantization, -96.3 dB
samples will have an SNR of101log;,(2-2") dB and the %WWWMMWMWWWWMW ’96

other half an SNR of-10log;o(c~?27?") dB, which is ‘ ‘ ‘ . ‘ ‘

averaged to yield the overall SNR. In this case, this willaqu ° Frequency . ’ Froquancy

—10logyo (3(272" + ¢72272)). In the case of an arbitrary — o ) i cesion. |
length gain masiCt], this extends to: the case shown in the Ieft panel we Scale il 0dd Samples tactarfof

1 2, which results in one less bit of precision for these sampB&ampling is
SNR(b, c) =10 IOglo - Z c[i]_22_2b . (9) done at 16 bits. fl'he' top trace shows the measured que_imizm'ise of the
n 4 odd samples, which is also the level expected for 15-bit sampTrhe bottom
i=1 trace displays the noise for the even samples, which is hisexpected noise
If we have a time-varying gaiﬁf[k] then the predicted SNR for 16_—b|t sampling. '_I'h_e overa_II noise level for the gain mladed signal is
il be dvnamicallv chanaing in time according to the abovthe middle trace. This is the linear average of the other taoes (note the
wi e y y ging g %g scaling in this figure). Likewise, on the right, we shove thquivalent
equation. results for a gain mask'[k] = [1, 1/2, 1/3]. The top line is the noise for the
Simulations of the quantization noise effect when samplirfgjrd out of each triplet of samples, which gets effectvsmpled at 14.4
. . . . s. The bottom and third traces show the respective naois¢hé other two
white noise are shown in Fig. 4. In both cases we assUlples (sampled at 16 and 15 bits).
that we sample with 16 bits of precision. The left plot shows
the case where the gain mask@$k] = [1,1/2]. This means
that the even samples will be effectively sampled at 15 bits, . .
or?égratlons. To compute the power spectra we used a Hamming

We show the measured spectrum of the quantization noise ald 1w and a frame size of 512 samples. In the case of

compare it with the spectra of the 16-bit and 15-bit samplinsqr ightforward sampling, we observe severe distortiesylk-
noise. The noise under this sampling scheme is the averagée o '

- . 0 ing in an SNR of7.6 dB, and a significant presence of new
that between the two implied bit precisions. One more exam L . :
. . . : armonics in the signal. The spectrum of the extra noisecidde
takes place in the right panel of Fig. 4. In this case we sheaw t

noise levels when we use the gain ma&l] = [1, 1, 1/3] into the signal due to clipping, as compared to the input's

This time, the implied quantization for each triplet of sdesp spectrum, is shown in the top plot of Fig. 5. In comparison,

is 16, 15, and 14.4 bits, respectively. Once again we see t r}ft- spectrum of the introduced noise due to our reconstructi

N o [)ePuIts in an SNR of abouwd9 dB which is inaudible and
the overall quantization noise is the average of the used bi . -
accuracies roughly equal to the noise floor due to quantization. The

spectrum of the introduced noise as compared to the that of
the input is shown in the bottom plot of Fig. 5.

Now let us consider a real-world signal and illustrate the
The ultimate goal of this paper is to recover an otherwisslvantages of this method in a more realistic scenario.dn Fi
clipped signal with minimal distortion artifacts. To seewho 6 we display the results for a speech recording sampled at
this approach compares to an ordinarily sampled signal w8 kHz, where we contrast its power spectrum with that of
consider some examples and attempt to quantify the resultthe introduced noise due to clipping and the use of various
Let us consider the case in (3) again. This time the inputggin masks. The top plot shows the input waveform in gray,
1536 samples long and contain8n periods of a sinusoid and the limits of the numerical representation we used by the
(the number of periods was selected to be an irrationddshed lines. The input’s peak value surpasses the sampling

number, in order to minimize periodicity effects in the misrepresentation by a factor of 10, which results in clipping
measurements). Sampling takes place at 16 bits of precisi@aB% of the samples. The subsequent series of plots show the
Suppose that the sinusoid’s extrema are twice as largesipectra of the introduced noise using various gain masks, as
magnitude than what the available bit precision allows.sThtcompared to the spectrum of the input. One can easily see
means that if we perform straightforward sampling, roughlfrat the noise that is introduced when we don’t use a gain
66% of the samples will clip. Using variable gain sampling, wmask is as strong as the input signal (SNR of atibitdB),
only observe clipping in half of these samples, due to sgalinvhereas increasingly more aggressive masking improves the
half of them before quantization. SNR up to44 dB. The audible effects of this noise are virtually
Let us investigate what happens to the spectral charactenperceptible for most of the best performing gain masks. By
istics of the aforementioned sinusoid when performing éhesomparison, if we knewa priori the extreme values of the

IV. COMPARISON TO CLIPPING
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Figure 5. A comparison of the resulting noise spectra whenpfiag a
sinusoid that exceeds the available dynamic range in atitadi manner
versus the proposed approach. The dark trace of the tophpdatssthe power
spectrum of the quantization noise due to clipping. In catispa, the grey

40 L

trace shows the actual spectrum of the sinusoid after quagioth but without 0 12k 24k
any clipping. The bottom plot shows the same measures usingroposed Frequency (Hz)
method. The resulting noise pattern is significantly reduaad practically 120
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input signal and used the appropriate scaling to avoid itlgpp

the quantization noise would rise up to abeui6 dB. We 40, — e
therefore attain a noise performance witBihdB of the limit Frequency (Hz)

of quantization noise with proper scaling, but by doing so 120 = [1.1/6), SNR: 21 dB, 27% cipping w
we can capture signals with an unexpected 10-fold (20 dB) 1oy ~—— Spectrum of noise

increase in dynamic range. It should also be noted that the 1
kind of noise that we measure with this process is concetrat
in the high-energy portions, whereas the low-energy postio o ‘
exh|b|t less noise as compared W|th_ optimally scale_d sargpli 0 Froquenny (H2) 2k
This creates a noise pattern that is less perceptible than th 120
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We repeated the above experiment for multiple speech %W%
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and music waveforms and, in addition to the SNR, we also
measured the Perceptual Evaluation of Audio Quality (PEAQ) % 12 24k
scores [9] of the sampled representations in order to obtain Freavency (72
an indication of the perceived degradation. Using ordinary ™ C = [1,1/10], SNR: 44 dB, 267% clpping
sampling, 27% of the samples were clipped for the speech g'™®f ——Speenmonose
signals, and 41% for the music signals. The averaged results §
for that data are shown in Fig. 8. We clearly see that our & 4 1

approach increases the SNR dramatically with more aggeessi 40wmwwmww%

0 12k 24k

gain masks. The PEAQ scores also indicate that the sampling Frequency (Hz)

noise ranges from “highly annoying” in the case where we

have cllpp!ng, to_“lmperceptlble” n f[he case where nearlyiqure 6. Sampling error spectra for a speech signal usiigumgain masks,
correct gain scaling has been applied. This has also besrompared to clipping and normal sampling. The topmostdigplays the
verified in informal listening tests. For reference a 16@/kb nPut waveform (in gray) and the limits of the sampling regenetation we

. . . used by dashed lines. At its peak the waveform exceeds tlrege by a
MP3 encoding of these sounds results in a PEAQ index @Sftor of 10. The second plot from above displays the powectspm of the

about—0.5. noise introduced due to clipping. For reference, the spectof the actual

; ; ot ; japut is also shown by the gray line. Subsequent plots disihla spectra of
Another Interesting point Is the difference between spee sampling noise for a variety of gain masks. The text inplbés shows the

and music results. Speech, having higher kurtosis thanamugkin mask that was used, the resulting SNR in dB, and the geerercentage
has a smaller ratio of samples near the extreme amplitudelipped samples per analysis window using only windowsnehat least

values. This implies that clipping and its subsequent recolf'® Sample was clipped and reconstruction was necessary.
struction occurs less often than it does in music, which has a
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shows the input waveform with the clipping thresholds shdwrthe dashed
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scaling, which would guarantee no clipping (grey trace)] &me proposed
method (black trace). Note how our method samples the lowggngarts
with less gquantization noise and introduces noise only énldludest sections.
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Figure 8. Averaged measurements of PEAQ (top) and SNR (hptio

multiple speech and music examples. The labels on the x axistd the gain
mask that was used. The leftmost case, where the maskCijids= 1, is
equivalent to normal sampling without any gain modulatibhe input signals
were scaled so that their maximum value would be 10 times thgimum
sample in the used representation. Therefore the rightimast denote the
case where, at worst, only one sample out of every two is etlpfhe cases

on the left are the worst-case scenarios.

more uniform distribution of amplitude values. This resuitt

V. DISCUSSION

So far we only considered simple gain masks in order to
make the presentation more accessible. Let us now discuss
some of the more interesting directions that we can takegusin
this approach.

As we pointed out earlier, the size and composition of the
gain masks can be of arbitrary length. Selecting an appatgpri
mask in such cases can be an involved procedure. Ideally we
would like to ensure that the clipped samples within a mask
will be as few as possible. This implies that the most castiou
selection for a mask would be one where most of the gains
are small, with only a few taking large values. This will risu
in having to reconstruct a minimal number of samples and a
small risk potential of reconstruction error. On the othandh,
this will result in increasing the average quantizationseadf
the samples, since most inputs will be scaled down. A more
aggressive selection would be the opposite approach of usin
many large gains and very few small gains. This will result in
having to reconstruct more missing data, but with little &op
in the effective number of bits used to represent the samples

A choice in the spectrum between these options can be
based on knowledge of the kind of input sound. A highly
kurtotic signal, like speech, can benefit from an aggressive
choice of a gain mask, whereas a more uniform signal, like
a popular music recording, would not. Since the qualitative
tradeoffs between clipping and our reconstruction are asye
to analyse or quantify, making an automatic decision on the
optimal gain mask based on signal statistics is not easy, and
at this point we can only rely in a mask selection based on
heuristics.

In either of these cases, it is prudent to carefully arrahge t
gain mask elements in order to help the reconstruction pgce
For example, it is best to use a mask that can result in smaller
sections of contiguous clipped data, such [ast/2,1,1/3],
as opposed tdl,1,1/2,1/3]. This makes the reconstruction
process simpler and also constructs an aliasing pattetn tha
is easier to resolve (the second mask can result in “double”
aliasing as opposed to the regular aliasing we would get with
the first one).

When thinking in terms of aliasing effects, another factor
that becomes relevant is the sampling rate we choose. One
can consider the extreme case where we use a two-sample
gain mask and oversample the (bandlimited) input by twiee th
required sampling rate. This means that even if we lose one
in two samples to clipping, we can still reconstruct the aign
without loss of information. This is because we avoid aligsi
which mixes the real and folded frequencies by increasieg th
sampling rate. The generalization of this statement is dlsat
long as we oversample a bandlimited input by the length of
the gain mask, then there will be no serious aliasing issue.
Of course this is not particularly practical and is essdgtia
equivalent to sampling the same signal while multiplexing
inputs with multiple gains. However, even oversampling by a

smaller SNR gains for the music signal. On the other hand, thractional amount will result in minimizing the aliasingenap
PEAQ scores on music sounds are more favorable since #ml can lend to better reconstruction. In cursory simutatio
resulting distortion is not as prominent within a busy enlslem oversampling by as little as 10% resulted in an SNR increase
of many wideband sounds.

of 5 dB, whereas oversampling by 20% resulted if-dB



increase. repeatable source, and offers no guarantee of success when
An alternative approach, which can average out the mask depeating the recording process. Given these two contsrain

sign options, is the use of a completely random gain mask. Ptiee alternative we present is a valuable approach to raugrdi

liminary simulations show that this can result in an impmbvereliably under uncertain gain conditions.

SNR and average out the tradeoffs in the aforementioned
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Implementation of the waveform restoration in hardware is a
much more complex endeavor, however it is not required and
in fact to be avoided. Aside from complications in implement
ing a linear program solver in hardware, restoring a clipped
waveform would necessitate a change in numerical format to
one that is able to accurately represent the reconstruditua

only postpones the problem of guessing the input's extrema
from the gain stage to the storage stage. Even if we guess
right, we would have to use considerably more storage space
to cover the expanded dynamic range, which is not a practical
decision. Instead we can keep the gain-modulated and dippe
waveform in the bit width that the sampling hardware already
uses and then perform the reconstruction in software using
floating point when we need access to the actual waveform.
This would be akin to sampling the signal in a compressed
format and then having to decode it when waveform access is
needed. This way we can keep the hardware implementation
very simple and provide an efficient storage format for much
larger dynamic ranges than otherwise.

We should also note that the main benefit of this approach is
not higher fidelity sampling, but rather the design of a pssce
that can tolerate gross miscalculations in gain settingdeal
with wide energy fluctuations in a signal, and still produoe a
acceptable sampling performance. These are situatiohartha
commonplace with consumer products such as handheld audio
and video devices, which often produce clipping in recagdin
but also in studio situations when using close miking tech-
nigues on dynamic sources, such as drums and voice, in order
to reduce the presence of reverberation and ambient noise.

Alternative sampling options in these cases are either siee u
of automatic gain control or re-recording with adjustedngai
The former approach will result in severe misrepresematio
of the signal, which depending on the intended application
of the recording, might be undesirable. The latter approach
requires extra work and time in addition to requiring a telja



